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• Non-atomic Congestion Games:

Continuum of players with available demand D = 1 selfishly travels
from s ∈ V to t ∈ V in directed graph G = (V, E) with affine edge costs

ce(xe) = ae · xe+ be, ae ∈ R>0, be ∈ R≥0

• Incomplete Information:

Actual demand of players is determined by state of nature θ drawn from
Θ = {θ1, . . . ,θℓ} based on probability distribution µ∗ ∈∆(Θ).

Each θ entails an actual demand dθ ≤ 1, i.e., each player is active inde-
pendently with probability dθ .

• Information Design:

Principal P knows actual θ exclusively (players only see µ∗).

P sends a signal σ ∈ Σ to all active players according to signaling
scheme ϕ =
�

ϕθ ,σ

�

θ∈Θ,σ∈Σ where ϕθ ,σ ≥ 0 is the joint probability that
state θ is realized and signal σ is sent.

Upon receiving σ (knowing µ∗ and ϕ), active players infer conditional
belief µσ ∈∆(Θ) about the actual demand.
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Every signaling scheme ϕ can be seen as a convex decomposition of µ∗

into induced beliefs µσ since µ∗
θ
=
∑︁

σ∈Σϕθ ,σ =
∑︁

σ∈Σϕσ ·µθ ,σ .

• Each active player depends their choice of an s-t-path with minimum
private cost on expected edge cost conditioned on µσ:

ce (xe | µσ) =
∑︂

θ∈Θ

µθ ,σ · dθ · ce(dθ · xe)

• They reach a Wardrop equilibrium x∗(µσ) (WE) with support Aσ of used
edges and total expected cost C(µσ) =

∑︁

e∈E x∗e(µσ) · ce(x∗e(µσ) | µσ) .

•P is benevolent and aims to compute optimal schemeϕ∗ that minimizes
the total expected cost of the resulting WE, i.e.,

C (ϕ) =
∑︂

σ∈Σ
ϕσ · C (µσ)

Consider Σ= {a, b}.
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Let µ := µθ2
.

Full Information (FI):
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Results

• C(µ) is piecewise linear due to system L of linear equations and in-
equalities that must be satisfied in WE:
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µθdθ ≥ πw ∀e ∈ E \ A, (4)

xe ≥ 0 ∀e ∈ E (5)

• C(µ) is non-decreasing if |Θ|= 2.

• If |Θ| = 2, there exists a fully polynomial-time approximation scheme
(FPTAS) for computing ϕ∗:
– The algorithm (ALG) computes polynomial many sample points q−j <
µ∗ < q+k for C(µ) with exponentially decreasing step size towards µ∗.

– ALG determines the pair (q−j , q+k ) for which the line ℓ jk(µ) through
C(q−j ) and C(q+k ) is minimal at µ∗ (or chooses No Signal).

– Approximation ratio of (1 + ϵ) for any ϵ > 0 since there is always a
sample point q in ϵ-distance (red area) to optimal µσ with lower cost.

Illustration of ALG and proof: (again, Σ= {a, b} and µ := µθ2
)
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• Strict characterization: FI is always an optimal signaling scheme if and
only if G is series-parallel.

• Given k distinct supports (Aσ)σ∈[k], the best signaling scheme inducing
WE with supports (Aσ)σ∈[k] can be computed by an L -based LP in time
polynomial in |Θ|, |E|, and k.

• Computational stud-
ies indicate that k is
comparatively small
for real-world traffic
networks of various
dimensions.

Network |V | |E| |Z | dθ2

Sioux Falls (SF) 24 76 24 360,600
Eastern Massachusetts (EM) 74 258 74 65,576
Berlin-Friedrichshain (BF) 224 523 23 11,205
Berlin-Pr.-Berg-Center (BP) 352 749 38 16,660
Berlin-Tiergarten (BT) 361 766 26 10,755
Berlin-Mitte-Center (BM) 398 871 36 11,482

arXiv version: Network
k C(µ)

AV SD MAX concave [%] linear [%]

SF 4.67 2.08 9 80 10
EM 5.15 3.14 12 70 8
BF 5.28 2.76 12 68 10
BP 4.90 1.85 11 88 3
BT 5.10 2.54 11 78 8
BM 5.15 2.38 11 75 3


