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Model & Concepts

* Non-atomic Congestion Games:

Continuum of players with available demand D = 1 selfishly travels
froms €V to t € V in directed graph G = (V, E) with affine edge costs

c.(x,)=a,-x,+b, a,€R.y b, €R,,

* [ncomplete Information:

Actual demand of players is determined by state of nature 6 drawn from
®©={6,,...,0,} based on probability distribution u* € A(©).

Each 0 entails an actual demand dy < 1, i.e., each player is active inde-

pendently with probability d,.

* Information Design:

Principal & knows actual 0 exclusively (players only see u®).

% sends a signal o € X to all active players according to signaling
scheme ¢ = (goe,a) oo o Where g ;> 0 is the joint probability that
state 0 is realized and signal o is sent.

Upon receiving o (knowing u* and ), active players infer conditional
belief u, € A(©) about the actual demand.

U, @ o o= (9091,0 9091,0)

Po,.@ ¥o,0
radh"
M@Z @ Po = Z Yoo

v, Y O Uo 0<d

Every signaling scheme ¢ can be seen as a convex decomposition of u*
into induced beliefs u, since W = D, s ¥o.0 = Dives Po " .o -

e Each active player depends their choice of an s-t-path with minimum
private cost on expected edge cost conditioned on u,:

¢ (X, | o) = D Bo,o - do - co(dg - x,)

e

e They reach a Wardrop equilibrium x*(u,) (WE) with support A, of used
edges and total expected cost C(uy) = D, cr X (o) * ce( (o) | Ueo) -

* & is benevolent and aims to compute optimal scheme ¢* that minimizes
the total expected cost of the resulting WE, i.e.,
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Results

* C(u) is piecewise linear due to system £ of linear equations and in-
equalities that must be satisfied in WE:
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* C(u) is non-decreasing if |©| = 2.

o If |©| = 2, there exists a fully polynomial-time approximation scheme
(FPTAS) for computing ¢™:

—The algorithm (ALG) computes polynomial many sample points q; <
u* < q; for C(u) with exponentially decreasing step size towards u*.

—ALG determines the pair (q]._, q;) for which the line ¢;(u) through
C (q]._) and C(q;) is minimal at u* (or chooses No Signal).

— Approximation ratio of (1 + €) for any £ > O since there is always a
sample point g in e-distance (red area) to optimal u, with lower cost.

Illustration of ALG and proof: (again, > ={a, b} and u := Ugp, )

C(u)
C(1) + / Cro(t)
|
:‘ I IIIIIII|:IIIIIII T :‘ 5 ‘ y U

_I_

0 q, u, u* q, U, 1

*__

Carg < Lj(u*) < Z;_Z;i C(up) 33:5; C(ug)

e Strict characterization: FI is always an optimal signaling scheme if and
only if G is series-parallel.

* Given k distinct supports (A, ),<[x], the best signaling scheme inducing
WE with supports (A, ),<rx7 can be computed by an £-based LP in time
polynomial in |®|, |E|, and k.

Network VI [El 1Z]  dy,

Sioux Falls (SF) 24 76 24 360,600
Eastern Massachusetts (EM) 74 258 74 65,576
Berlin-Friedrichshain (BF) 224 523 23 11,205
Berlin-Pr.-Berg-Center (BP) 352 749 38 16,660
Berlin-Tiergarten (BT) 361 766 26 10,755

e Computational stud-
ies indicate that k is
comparatively small
for real-world traffic
networks of various

dimensions. Berlin-Mitte-Center (BM) 398 871 36 11,482
: . k C(u)
arXtv version: Network AV SD MAX concave [%] linear [%]
SF 4,67 2.08 9 80 10
EM 5.15 3.14 12 70 3
BF 5.28 2.76 12 68 10
BP 490 1.85 11 88 3
BT 5.10 2.54 11 78 3
BM 5.15 2.38 11 75 3




