Information Design for Congestion Games with Unknown Demand

Svenja M. Griesbach, Martin Hoefer, Max Klimm, **Tim Koglin**

Model & Concepts

Actual demand of players is determined by state of nature *θ* drawn from $\Theta = {\theta_1, ..., \theta_\ell}$ based on probability distribution $\mu^* \in \Delta(\Theta)$.

Each *θ* entails an actual demand $d_\theta \leq 1$, i.e., each player is active independently with probability d_{θ} .

•*Non-atomic Congestion Games:*

Principal $\mathscr P$ knows actual θ exclusively (players only see μ^*).

 $\mathcal P$ sends a signal σ ∈ $Σ$ to all active players according to signaling scheme $\varphi = (\varphi_{\theta,\sigma})$ $\theta \in \Theta, \sigma \in \Sigma$ where $\varphi_{\theta, \sigma} \geq 0$ is the joint probability that state θ is realized and signal σ is sent.

•*Incomplete Information:*

•*Information Design:*

Upon receiving *σ* (knowing *µ* ∗ and *ϕ*), active players infer conditional • $C(\mu)$ is piecewise linear due to system $\mathscr L$ of linear equations and inequalities that must be satisfied in WE:

e∈*δ*⁺(*v*) *θ*∈*Θ e*∈*δ*[−](*v*) *θ*∈*Θ* $\pi_s = 0$ (3) π ^{*v*} + a ^{*e*} $\sqrt{ }$ *θ*∈*Θ* $\mu_{\theta}d_{\theta}^2$ *θ* \ $x_e + b_e$ ∑︂ *θ*∈*Θ* $\forall e \in E \setminus A,$ (4) $x_e \ge 0$ $\forall e \in E$ (5)

• $C(\mu)$ is non-decreasing if $|\Theta| = 2$.

Every signaling scheme φ can be seen as a convex decomposition of μ ∗ into induced beliefs μ_σ since μ ∗ $\overset{*}{\theta} =$ $\sum_{\sigma\in\Sigma}\varphi_{\theta,\sigma}=$ $\sum_{\sigma\in\Sigma}\varphi_{\sigma}\cdot\mu_{\theta,\sigma}$.

• If $|\Theta| = 2$, there exists a fully polynomial-time approximation scheme (FPTAS) for computing *ϕ* ∗ :

- **–**The algorithm (ALG) computes polynomial many sample points *q* − *^j < µ* [∗] *< q* $_+$ $\frac{1}{k}$ for $C(\mu)$ with exponentially decreasing step size towards μ ∗ .
- **–**ALG determines the pair (*q* − *j* , $q_{\scriptscriptstyle k}^+$ *k*) for which the line *ℓjk* (*µ*) through *C*(*q* − $_j^-$) and $C(q_k^+)$ $\mu_k^{\scriptscriptstyle +}$) is minimal at μ ∗ (or chooses No Signal).
- **–**Approximation ratio of $(1 + \varepsilon)$ for any $\varepsilon > 0$ since there is always a sample point *q* in *ε*-distance (red area) to optimal μ_{σ} with lower cost.

•Each active player depends their choice of an *s*-*t*-path with minimum private cost on expected edge cost conditioned on *µσ*:

$$
c_e(x_e | \mu_\sigma) = \sum_{\theta \in \Theta} \mu_{\theta,\sigma} \cdot d_\theta \cdot c_e(d_\theta \cdot x_e)
$$

Illustration of ALG and proof: (again, $\Sigma = \{a, b\}$ *and* $\mu := \mu_{\theta_2}$ *)*

belief $\mu_{\sigma} \in \Delta(\Theta)$ about the actual demand.

- •They reach a Wardrop equilibrium *x* ∗ (μ_{σ}) (WE) with support A_{σ} of used edges and total expected cost $C(\mu_{\sigma}) = \sum_{e \in E}$ *x* ∗ e^* $(\mu_{\sigma}) \cdot c_e$ (x) ∗ e^* (μ_{σ}) | μ_{σ}).
- $\mathscr P$ is benevolent and aims to compute optimal scheme φ^* that minimizes

the total expected cost of the resulting WE, i.e.,

- Strict characterization: FI is always an optimal signaling scheme if and only if *G* is series-parallel.
- Given *k* distinct supports $(A_{\sigma})_{\sigma \in [k]}$, the best signaling scheme inducing WE with supports $(A_{\sigma})_{\sigma \in [k]}$ can be computed by an $\mathscr L$ -based LP in time polynomial in |*Θ*|, |*E*|, and *k*.

$$
C(\varphi) = \sum_{\sigma \in \Sigma} \varphi_{\sigma} \cdot C(\mu_{\sigma})
$$

Consider
$$
\Sigma = \{a, b\}
$$
. Let $\mu := \mu_{\theta_2}$.
\nNo Signal (No): Full Information (FI):
\n $\varphi_{\text{No}} = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}$
\n $\begin{matrix} 5/8 \cdot x_1^* & 5/8 \\ 5/8 & t \end{matrix}$
\n $\begin{matrix} 5/8 \cdot x_1^* & 5/8 \\ 1/4 & 1/4 \end{matrix}$
\n $\begin{matrix} 5/8 \\ 6 \end{matrix}$
\n $\begin{matrix} 1/4 \\ 6 \end{matrix}$
\n $\begin{matrix} 6/4 \\ 1/4 \\ 0 \end{matrix}$
\n $\begin{matrix} 1/4 \\ 6/4 \\ 0 \end{matrix}$
\n $\begin{matrix} 1/4 \\ 1/4 \\ 0 \end{matrix}$
\n $\begin{matrix} 1/4 \\ 1/$

Results

$$
\pi_{\nu} + a_e \left(\sum_{\theta \in \Theta} \mu_{\theta} d_{\theta}^2 \right) x_e + b_e \sum_{\theta \in \Theta} \mu_{\theta} d_{\theta} = \pi_{\nu} \qquad \forall e \in A, \tag{1}
$$
\n
$$
\sum \sum \mu_{\theta} d_{\theta}^2 x_e - \sum \sum \mu_{\theta} d_{\theta}^2 x_e = \beta_{\nu} \qquad \forall \nu \in V, \tag{2}
$$

Continuum of players with available demand $D = 1$ selfishly travels from $s \in V$ to $t \in V$ in directed graph $G = (V, E)$ with affine edge costs

 $c_e(x_e) = a_e \cdot x_e + b_e, \quad a_e \in \mathbb{R}_{>0}, \ b_e \in \mathbb{R}_{\geq 0}$

•Computational studies indicate that *k* is comparatively small for real-world traffic networks of various dimensions.

arXiv version:

