Information Design for Congestion Games with Unknown Demand

Svenja M. Griesbach, Martin Hoefer, Max Klimm, Tim Koglin

Model & Concepts

Results

• $C(\mu)$ is piecewise linear due to system \mathscr{L} of linear equations and inequalities that must be satisfied in WE:

$$\pi_{\nu} + a_{e} \left(\sum_{\theta \in \Theta} \mu_{\theta} d_{\theta}^{2} \right) x_{e} + b_{e} \sum_{\theta \in \Theta} \mu_{\theta} d_{\theta} = \pi_{w} \qquad \forall e \in A,$$

$$\sum \sum \mu_{\theta} d_{\theta}^{2} x_{e} - \sum \sum \mu_{\theta} d_{\theta}^{2} x_{e} = \beta_{\nu} \qquad \forall \nu \in V,$$
(1)

• Non-atomic Congestion Games:

Continuum of players with available demand D = 1 selfishly travels from $s \in V$ to $t \in V$ in directed graph G = (V, E) with affine edge costs

 $c_{\rho}(x_{\rho}) = a_{\rho} \cdot x_{\rho} + b_{\rho}, \quad a_{\rho} \in \mathbb{R}_{>0}, \ b_{\rho} \in \mathbb{R}_{>0}$

• Incomplete Information:

Actual demand of players is determined by state of nature θ drawn from $\Theta = \{\theta_1, \ldots, \theta_\ell\}$ based on probability distribution $\mu^* \in \Delta(\Theta)$.

Each θ entails an actual demand $d_{\theta} \leq 1$, i.e., each player is active independently with probability d_{θ} .

• Information Design:

Principal \mathcal{P} knows actual θ exclusively (players only see μ^*).

 \mathscr{P} sends a signal $\sigma \in \Sigma$ to all active players according to signaling scheme $\varphi = (\varphi_{\theta,\sigma})_{\theta \in \Theta, \sigma \in \Sigma}$ where $\varphi_{\theta,\sigma} \ge 0$ is the joint probability that state θ is realized and signal σ is sent.

Upon receiving σ (knowing μ^* and φ), active players infer conditional

 $e \in \delta^+(v) \theta \in \Theta$ $e \in \delta^{-}(v) \theta \in \Theta$ $\pi_s = 0$ (3) $\pi_{v} + a_{e} \left(\sum_{\theta \in \Theta} \mu_{\theta} d_{\theta}^{2} \right) x_{e} + b_{e} \sum_{\theta \in \Theta} \mu_{\theta} d_{\theta} \geq \pi_{w}$ $\forall e \in E \setminus A,$ (4) $\forall e \in E$ $x_{\rho} \geq 0$ (5)

• $C(\mu)$ is non-decreasing if $|\Theta| = 2$.

• If $|\Theta| = 2$, there exists a fully polynomial-time approximation scheme (FPTAS) for computing φ^* :

- -The algorithm (ALG) computes polynomial many sample points $q_i^- <$ $\mu^* < q_k^+$ for $C(\mu)$ with exponentially decreasing step size towards μ^* .
- -ALG determines the pair (q_i^-, q_k^+) for which the line $\ell_{jk}(\mu)$ through $C(q_i^-)$ and $C(q_k^+)$ is minimal at μ^* (or chooses No Signal).
- -Approximation ratio of $(1 + \varepsilon)$ for any $\varepsilon > 0$ since there is always a sample point q in ε -distance (red area) to optimal μ_{σ} with lower cost.

Illustration of ALG and proof: (again, $\Sigma = \{a, b\}$ and $\mu := \mu_{\theta_{\gamma}}$)

belief $\mu_{\sigma} \in \Delta(\Theta)$ about the actual demand.

Every signaling scheme φ can be seen as a convex decomposition of μ^* into induced beliefs μ_{σ} since $\mu_{\theta}^* = \sum_{\sigma \in \Sigma} \varphi_{\theta,\sigma} = \sum_{\sigma \in \Sigma} \varphi_{\sigma} \cdot \mu_{\theta,\sigma}$.

• Each active player depends their choice of an *s*-*t*-path with minimum private cost on expected edge cost conditioned on μ_{σ} :

$$c_e(x_e \mid \mu_{\sigma}) = \sum_{\theta \in \Theta} \mu_{\theta,\sigma} \cdot d_{\theta} \cdot c_e(d_{\theta} \cdot x_e)$$

- They reach a Wardrop equilibrium $x^*(\mu_{\sigma})$ (WE) with support A_{σ} of used edges and total expected cost $C(\mu_{\sigma}) = \sum_{e \in E} x_e^*(\mu_{\sigma}) \cdot c_e(x_e^*(\mu_{\sigma}) \mid \mu_{\sigma})$.
- \mathscr{P} is benevolent and aims to compute optimal scheme φ^* that minimizes

- Strict characterization: FI is always an optimal signaling scheme if and only if G is series-parallel.
- Given k distinct supports $(A_{\sigma})_{\sigma \in [k]}$, the best signaling scheme inducing WE with supports $(A_{\sigma})_{\sigma \in [k]}$ can be computed by an \mathscr{L} -based LP in time polynomial in $|\Theta|$, |E|, and k.

the total expected cost of the resulting WE, i.e.,

$$C(\varphi) = \sum_{\sigma \in \Sigma} \varphi_{\sigma} \cdot C(\mu_{\sigma})$$

Consider
$$\Sigma = \{a, b\}$$
.
No Signal (No):

$$\varphi_{No} = \begin{pmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{pmatrix}$$

$$5/8 \cdot x_1^*$$

$$s \underbrace{5/8}_{5/8} t$$

$$C(\varphi_{No}) = 5/8$$
Let $\mu := \mu_{\theta_2}$.
Full Information (FI):

$$C(\mu) - C_{No}(\mu)$$

$$5/6 \frac{1}{5/8} + C(\varphi_{FI}) = \frac{13}{24} + \frac{1}{4} + \frac$$

• Computational studies indicate that k is comparatively small for real-world traffic networks of various dimensions.

Network	V	E	Z	$d_{ heta_2}$
Sioux Falls (SF)	24	76	24	360,600
Eastern Massachusetts (EM)	74	258	74	65,576
Berlin-Friedrichshain (BF)	224	523	23	11,205
Berlin-PrBerg-Center (BP)	352	749	38	16,660
Berlin-Tiergarten (BT)	361	766	26	10,755
Berlin-Mitte-Center (BM)	398	871	36	11,482

arXiv version:

Network	k $$			$__C(\mu)$ $__$		
	AV	SD	MAX	concave [%]	linear [%]	
SF	4.67	2.08	9	80	10	
EM	5.15	3.14	12	70	8	
BF	5.28	2.76	12	68	10	
BP	4.90	1.85	11	88	3	
BT	5.10	2.54	11	78	8	
BM	5.15	2.38	11	75	3	