
Discrete Load Balancing : Power of Matchings

Collaborators:

■ Petra Berenbrink. University of Hamburg, Germany.

■ Tom Friedetzky. Durham University, England.

■ Robert Elsässer. University of Salzburg, Austria.

■ Hamed Hosseinpour. University of Hamburg, Germany.

■ Dominik Kaaser. Hamburg University of Technology, Germany.

■ Peter Kling. University of Hamburg.

■ Thomas Sauerwald. University of Cambridge, England.

Problem Definition:

■ Graph G = (V, E)with n nodes.

■ Xu(t) is the discrete load of node u at the beginning of round t.

■ In each round a matching is given. Nodes u and v balance their loads if edge
(u, v) is in the matching:

▶ with probability 1/2, u receives
⌈
Xu(t)+Xv(t)

2

⌉
and v receives

⌊
Xu(t)+Xv(t)

2

⌋
, or vise versa.

Objective: Minimize the maximum load difference between any pair of nodes.

Preliminaries:

■ Based on the given matching of round t, the balancing matrix M(t) ∈ Rn×n is
defined as follows:

M(t)
u,v =


1
2 : u ̸= v are matched in step t ;
0 : u ̸= v are not matched in step t ;
1 : u = v and u is not matched in step t.

Continues Setting:

■ The load can be arbitrarily divided. At round t, each of twomatched nodes u, v
get (Xu(t) + Xv(t))/2 load and we have X(t + 1) = X(t) ·M(t + 1) ([1]).

■ τBC(K): the time it takes to reduce the initial discrepancy K to 1/2n in the
continues setting.

■ [1] : τBC(K) = O(log(Kn)/(1− λ)), in which 1− λ is the spectral gap of the
diffusion matrix.

■ [1]: The difference of discrete and continues load, for a fixed node, at round t is
a weighted sum of errors on all edges from all rounds s ≤ t.

■ [2]: For any δ > 1/2n: Pr[ discrepancy at round τBC(K) ≥ δ] ≤ e−cδ2.

■ x is the average load. Node u has max{Xu(t)− x, 0} excess tokens in round t.

■ [2]: Discrepancy is at most two times the maximum number of excess tokens
on a node.

Result:

Pr[Discrepancy after O(τBC(K)) rounds is O(1)] ≥ 1− exp(− log(n)/ log logn).

Analysis:

■ We establish a tail concentration bound for a weighted sum of loads after τBC(k).

■ For a vector (aw)w∈V with |a|1 = 1 and round t ≥ τBC(K), it holds

Pr

[∑
w∈V

|aw · Xu(t)− x| ≥ 1/2n + δ

]
≤ exp(−cδ2/∥a∥22).

■ We consider an auxiliary process which has the same load distribution as the
original process.

Auxiliary Process:

■ The auxiliary process in round t has two steps calledmoving and shuffling.
Assume the edge {u, v} ∈ M(t) and xu(t− 1) ≥ xv(t− 1).

▶ At the beginning of the process the tokens on each node are ordered in an arbitrary
way. The height of a token is its position in that order, starting at 1.

▶ In themoving step the process moves the top ⌊(xu(t− 1)− xv(t− 1))/2⌋ tokens from
u to v.

▶ We call tokens located on u and vwith equal height as buddies. In the shuffling
step, each token on u swaps its location with its buddy with probability 1/2,
independently from all other tokens.

■ The height of a token never increases over rounds.

■ The location of tokens are Negatively Correlated.

▶ The probability that a subset of tokens are located at a subset of nodes is at most
the product of individual probabilities.

Nodes u and v balance their load. The tokens on u are of height 1, 2, 3, 4, 5, 6, 7 and
the tokens on v are of height 1, 2. In the moving step, u sends ⌊(7− 2)/2⌋ top tokens
to v ((b)). Then, any token on u may be randomly swapped with its buddy with
probability 1/2 ((c)). The result of this is shown in (d).

Lemma:

Assume there are (1 − ϵ) · n tokens with height at least c, for some positive con‐
stant ϵ. Then after O(τBC(K)) rounds, no token has height c + 2 w.p. 1 − exp(ϵ ·
log(n)/5 log logn).

O(1) Discrepancy:

■ We split the analysis into 3 parts.

1. There are 12n excess tokens in round τBC(K) and the maximum height is 24.

▶ Each node has O(
√

logn) excess tokens.
▶ The number of excess tokens, for a fixed node, is double exponentially decreasing.

2. Then, after another O(τBC(K)) round, there are at most 1.8n excess tokens.

▶ We show as long as there are at least 1.8n excess tokens, after one τBC(K) rounds,
Ω(n) excess tokens disappear.

3. After another O(τBC(K)) rounds, the discrepancy is 6 at most.

▶ The number of tokens at maximum height is o(n).

▶ After another τBC(K) rounds, all tokens at maximum height disappear.

▶ It works for height at least 4.
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