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Introduction
We describe an implementation of the two-phase
image segmentation algorithm. This algorithm
partitions the domain of a given 2d image into
foreground and background regions, and each
pixel of the image is assigned membership to one
of these two regions. The underlying assumption
for the segmentation model is that the pixel val-
ues of the input image can be summarized by
two distinct average values, and that the region
boundaries are smooth.

Segmentation Model
The model aims to segment the domain Ω ⊂ R2

of a grayscale image f : Ω → R into a foreground
region Ω1, with perimeter Per(Ω1) and a back-
ground region Ω2 = Ω \ Ω1. The image values
in Ω1,Ω2 can be approximated by averages c1, c2
respectively.This model can be formulated as the
minimization of the energy:

Per(Ω1)+λ

∫
Ω1

(f(x)−c1)
2dx+λ

∫
Ω2

(f(x)−c2)
2dx

Theorem [3]: For any given fixed
c1, c2 ∈ R, a global minimizer for the
above energy is obtained by solving the
convex minimization: min0≤u≤1

∫
Ω
|∇u|dx +

λ
∫
Ω

{
(f(x)− c1)

2 − (f(x)− c2)
2
}
u(x)dx (1)

and then setting Ω1 = {x : u(x) ≥ µ} for a.e.
µ ∈ [0, 1].

Bregman Iterations
Suppose J and H are (possibly non-
differentiable) convex functionals defined on a
Hilbert space X. The Bregman iterations can
be used to solve a convex minimization problem
of the form minu∈B J(u) + λH(u), λ > 0.

Suppose J : X → R is a convex function
and u ∈ X. An element p ∈ X∗ is called
a subgradient of J at v if for all u ∈ X:
J(u) − J(v) − ⟨p, u − v⟩ ≥ 0. The set of
all subgradients of J at v is called the sub-
differential of J at v, and it is denoted by ∂J(v).

Suppose J : X → R is a convex function,
u, v ∈ X and p ∈ ∂J(v). Then the Bregman
distance between points u and v is defined by:
Dp

J(u, v) := J(u)− J(v)− ⟨p, u− v⟩

Bregman iterations for differentiable H are
summarized below.
initialization: p0 ∈ ∂J(u0)
For k = 0, 1, . . .

uk+1 = argminuD
pk

J (u, uk) + λH(u)
pk+1 = pk − λ∇H(uk+1)
We are interested in Bregman iterations
in the case of linear constraints Au = z,
:minuJ(u) +

λ
2 ∥Au− z∥2. The iterations can be

shown to be equivalent to:

initialization: u0, b0 = 0, z is given data
For k = 0, 1, . . . uk+1 = argminuJ(u)+

λ
2 ∥Au−

z − bk∥2
bk+1 = bk + z −Auk

Discretized Model
We discretize the segmentation energy (1)
weighted by function g as follows:∑
i,j

gi,j |∇ui,j |+λ
∑
i,j

((fi,j−c1)
2−(fi,j−c2)

2)ui,j .

We introduce the auxiliary variable di,j =
∇ui,j , and consider the equivalent augmented
Lagrangian.
argmin0≤u≤1,d

∑
i,j gi,j |di,j | + λ

∑
i,j((fi,j −

c1)
2 − (fi,j − c2)

2)ui,j + γ
2

∑
i,j(di,j − ∇ui,j −

bi,j)
2, γ > 0.

To minimize the discretized augmented La-
grangian, we minimize first over d, then over
u while keeping the other variable fixed. We
iterate in this manner until convergence.

Experiments and Results

further direction
• Apply this iteration technique to other optimiza-

tion problems like compressed sensing.

• Image segmentation of 3d images and multiphase
segmentation.
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Minimize discrete model
The d subproblem: argmind

∑
i,j gi,j |di,j | +

γ
2

∑
i,j(di,j − ∇ui,j − bi,j)

2 with solution:
di,j =

∇ui,j+bi,j
|∇ui,j+bi,j | max{|∇ui,j + bi,j | − gi,j

γ , 0}

The u subproblem:
argmin0≤u≤1λ

∑
i,j((fi,j − c1)

2 − (fi,j −
c2)

2)ui,j +
γ
2

∑
i,j(∇ui,j − di,j + bi,j)

2.
The optimal u satisfies ∆ui,j =

λ
γ ri,j+div(di,j−

bi,j) where ri,j = (fi,j − c1)
2 − (fi,j − c2)

2.
The solution to the u-subproblem can be ob-
tained with Gauss-Seidel iterations
Region update: Ωk

1 = {(i, j) : uk
i,j ≥

0.5},Ωk
2 = {(i, j) : uk

i,j ≤ 0.5}; and ck1 =
1

|Ωk
1 |
∑

(i,j)∈Ωk
1
fi,j , c

k
2 = 1

|Ωk
2 |
∑

(i,j)∈Ωk
2
fi,j .


