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Thresholds
Threshold phenomena arise naturally in many
contexts and have received a lot of attention in
physics as well as in mathematics. Looking at a
fixed graph property P of graphs, we ask:

What is the probability that a random graph
Gp has property P?

Increasing the probability p makes the graph
denser. If the property P is non-empty and in-
creasing, there is a critical probability p∗ around
which there is a drastic change: the probability
of having property P jumps from zero to one [2].
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This sharp transition is called a threshold phe-
nomenon.

Hitting times
Given a graph G = (V,E)

1) the random graph Gp is on vertex set V
where each edge of G is retained with probability
p independently.
2) the random graph process on G starts
with the empty graph G(0) and at each step
1 ≤ i ≤ |E|, G(i) is obtained from G(i − 1) by
adding uniformly at random a new edge from E.

The hitting time of a monotone increasing
(non-empty) graph property P is a random vari-
able equal to the minimum index τ for which
G(τ) ∈ P, but G(τ − 1) /∈ P.
If two properties P1,P2 have the same hitting
time, they come up at exactly the same time
in the random graph process. Having the same
hitting time is an even stronger property than
having the same threshold.

Graph properties
Three very well-studied properties of graphs are

• PC connectedness,
• PD minimum degree one,
• PPM existence of a perfect matching.

Note that deterministically
τ(PC) ≥ τ(PD) and τ(PPM ) ≥ τ(PD).
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Main results

In 1990, Bollobás [1] showed:

Whp, τ(PC) = τ(PD) = τ(PPM ) in the random graph process on the t-
dimensional hypercube Qt.

We generalize this to regular Cartesian product graphs of bounded size base graphs.
Let C > 1. For every i ∈ [t], let Hi be a di-regular connected graph with 1 < |V (Hi)| ≤ C. Let
G = □t

i=1Hi denote the Cartesian product graph of H1, . . . ,Ht (see below for definition).

Theorem 1. [4] Whp, τ(PC) = τ(PD) = τ(PPM ) in the random graph process on G.

Product graphs
Given t graphs, Hi, . . . ,Ht, their Cartesian product G = □t

i=1Hi is the graph with the vertex set

V := {v = (v1, . . . , vt) : vi ∈ V (Hi) for all i ∈ [t]} ,

and the edge set{
uv :

there is some i ∈ [t] such that uj = vj
for all i ̸= j and {ui, vi} ∈ E (Hi)

}
.

We call H1, H2, . . . ,Ht the base graphs of G.
The hypercube is then the product of edges, namely Qt = □t

i=1K2.

Proof ideas
Consider p just before the threshold of minimum degree one. The following theorem characterizes
the structure of Gp and implies Theorem 1.

Theorem 2. [4] Let ϵ ≥ 0 be a sufficiently small constant, and let p be such that
(1− p)d ≤ n−(1−ϵ). Then, whp, the following properties hold in Gp.

(1) Every two isolated vertices in Gp are at distance at least two in G.

(2) There exists a unique giant component, spanning all but o(n) of the vertices. All the other
components of Gp, if there are any, are isolated vertices.

(3) The giant component of Gp has a perfect matching.

Properties 2 and 2 follow from a classical sprinkling argument. Then adding any edge in the
random graph process, it either lies in the giant component or connects an isolated vertex to the
giant component. Thus, exactly at the point when the last isolated vertex disappears (at τ(PD)) the
graph becomes connected (at τ(PC)). Furthermore by Property 2 the only obstructions to a perfect
matching are the isolated vertices and thus at the same time as these disappear (at τ(PD)) there is
a matching covering the graph (at τ(PPM )).
Let us take a more detailed look at Property 2. Suppose there is no perfect matching in Gp, then
there is a set of vertices U such that G − U contains more than |U | odd components (Tutte’s
theorem).

U

...
isolated vertices in G− U

...
components of size ≥ 3 in G− U

For each component in G−U all the edges leaving it, go to U . By the expansion properties ([3])
of regular product graphs, there are many edges leaving these components. On the other hand, since
G is d-regular, there are at most d|U | edges touching U . Thus many edges are not present in Gp,
which is a low probability event.
The main challenge is to bound the number of possible choices for U , such that the union bound
can be applied. In order to achieve this, we split into different cases according to the size of U and
the structure of G−U . Using the product structure of the underlying graph allows to bound the
number of choices for U , where |U | is large and has low expansion.


