Bootstrap percolation on the high-dimensional Hamming graph

Mihyun Kang, Michael Missethan, Dominik Schmid Institute of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

BOOTSTRAP PERCOLATION

Bootstrap percolation was introduced in 1979 in the context of magnetic systems. It has many applications ranging from studying the spread of information to modelling collective behaviour. Given a graph G, a set $A_0 \subseteq V(G)$ of **initially** infected vertices and the so-called infection **parameter** $r \in \mathbb{N}$, a **healthy** vertex gets infected if it has at least r infected neighbours.

THE HAMMING GRAPH

Given $n, k \in \mathbb{N}$, the *n*-dimensional Hamming graph $G = \Box_{i=1}^n K_K$ with base graphs K_k is the graph with vertex set $[k]^n$ where two vertices are adjacent if they differ in exactly one coordinate. In the special case k = 2, the Hamming graph $\Box_{i=1}^n K_2$ is the *n*-dimensional hypercube Q^n .

MAIN RESULTS

In 2006, Balogh and Bollobás[1] established a threshold for random bootstrap percolation on the *n*-dimensional hypercube with infection parameter r = 2:

Theorem Whp, $p_c(Q^n, 2) = \Theta(1) n^{-2} 2^{-2\sqrt{n}}$.

We generalize this result to the Hamming graph. Let $n, k \in \mathbb{N}$ satisfy $2 \leq k \leq 2\sqrt{n}$. Consider random bootstrap percolation on the *n*-dimensional Hamming graph $G = \Box_{i=1}^n K_k$ with infection parameter r = 2.

Theorem 1 ([3]). Whp, $p_c(\Box_{i=1}^n K_k, 2) = \Theta(1) n^{-2} k^{-2\sqrt{n+1}}$.

THE LOWER THRESHOLD

A projection of G is a subgraph of G that is isomorphic to a lower-dimensional Hamming graph (e.g., in the case $G = Q^n$ a projection is a subcube of G). A projection is **internally spanned**, if the subgraph induced by the projection percolates. Using so-called 'hierarchy' methods, which were introduced by Holroyed [2], we can show roughly that in order for G to percolate, there has to exist an internally spanned projection of every dimension in G (up to error terms of order $\Theta(k)$).

Theorem 2. For all $t \in \mathbb{N}$ the following holds.

G percolates if eventually all vertices get infected.

CRITICAL PROBABILITY

In **random** bootstrap percolation, the set of initially infected vertices is given as a random subset $A_p \subseteq V(G)$, where each vertex is retained independently with probability $p \in (0, 1)$. For many graphs, a **threshold phenomenon** is observable, where for increasing values of p, the probability of G percolating undergoes a drastic change from being almost 0 to being almost 1.

 $\left(\right)$ p_c $\mathbb{P}[G \text{ percolates}] \leq \mathbb{P}[\text{there exists an internally spanned projection of dimension } t].$

Similarly, we can derive upper bounds on the probability that a projection is internally spanned. Let us denote by X_t the number of internally spanned projections of dimension t in G. We show that for a certain critical dimension t_* the expected number of internally spanned projections turns to 0.

Theorem 3. Set $t_* = 2\sqrt{n} - 2$. Then,

 $\mathbb{E}\left[X_{t_*}\right] = o(1).$

By first moment method, the probability there is an internally spanned projection of dimension t_* is bounded from above by its expected number. So, Theorems 2 and 3 imply the lower threshold.

THE UPPER THRESHOLD

A sequence $v = (v_0, \ldots, v_\ell)$ of vertices is called **sequentially spanning**, if it satisfies the property that for any j, the subsequence (v_0, \ldots, v_j) spans a projection of dimension 2j in G. Crucial properties of such sequences are that they are minimum percolating and that a majority of all minimum percolating sets is of this type. Using the second moment method, show the existence of a sequence

The critical probability $p_c(G)$ is the point at which the probability that G percolates passes through 1/2.

 $p_c(G, r) \coloneqq \inf \{ p \mid \mathbb{P}[G \text{ percolates }] \ge 1/2 \}.$

REFERENCES

- [1] J. Balogh and B. Bollobás. Bootstrap percolation on the hypercube. Probab. Theory Related Fields, 134(4):624-648, 2006.
- [2] A. E. Holroyd. Sharp metastability threshold for twodimensional bootstrap percolation. Probab. Theory Related Fields, 125(2):195–224, 2003.
- [3] M. Kang, M. Missethan, and D. Schmid. Bootstrap percolation on the high-dimensional hamming graph, 2024. arXiv:2406.13341 [math.CO].

 $(v_0, \ldots, v_{\frac{n}{2}})$, where each vertex was initially infected.

Theorem 4. Denote by Y the number of i.s.s. sequences. If

(b) $\mathbb{V}[Y] = o\left(\mathbb{E}[Y]^2\right).$

Then $\mathbb{P}[Y \ge 1] \to 1$.

(a) $\mathbb{E}[Y] \to \infty;$

To show (a), recursively count ways to extend sequentially spanning sequences of given length. To show (b), for each j, count pairs of such sequences that share j vertices.

Then, by definition, the sequence $(v_0, \ldots, v_{\frac{n}{2}})$ forms a percolating set in G.