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Bootstrap Percolation
Bootstrap percolation was introduced in 1979 in
the context of magnetic systems. It has many
applications ranging from studying the spread
of information to modelling collective behaviour.
Given a graph G, a set A0 ⊆ V (G) of initially
infected vertices and the so-called infection
parameter r ∈ N, a healthy vertex gets in-
fected if it has at least r infected neighbours.

G percolates if eventually all vertices get in-
fected.

Critical probability
In random bootstrap percolation, the set of
initially infected vertices is given as a ran-
dom subset Ap ⊆ V (G), where each vertex is re-
tained independently with probability p ∈ (0, 1).
For many graphs, a threshold phenomenon is
observable, where for increasing values of p, the
probability of G percolating undergoes a drastic
change from being almost 0 to being almost 1.

pc0 1
p0

1

The critical probability pc(G) is the point at
which the probability that G percolates passes
through 1/2.

pc(G, r) := inf {p | P [G percolates ] ≥ 1/2} .
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The Hamming graph

Given n, k ∈ N, the n-dimensional Hamming graph G = □n
i=1KK with base

graphs Kk is the graph with vertex set [k]n where two vertices are adjacent if
they differ in exactly one coordinate. In the special case k = 2, the Hamming
graph □n

i=1K2 is the n-dimensional hypercube Qn.

Main results
In 2006, Balogh and Bollobás[1] established a threshold for random bootstrap percolation on the
n-dimensional hypercube with infection parameter r = 2:

Theorem Whp, pc(Qn, 2) = Θ (1)n−22−2
√
n.

We generalize this result to the Hamming graph.
Let n, k ∈ N satisfy 2 ≤ k ≤ 2

√
n. Consider random bootstrap percolation on the n-dimensional

Hamming graph G = □n
i=1Kk with infection parameter r = 2.

Theorem 1 ([3]). Whp, pc(□n
i=1Kk, 2) = Θ (1)n−2k−2

√
n+1.

The lower threshold
A projection of G is a subgraph of G that is isomorphic to a lower-dimensional Hamming graph
(e.g., in the case G = Qn a projection is a subcube of G). A projection is internally spanned, if
the subgraph induced by the projection percolates. Using so-called ‘hierarchy’ methods, which were
introduced by Holroyed [2], we can show roughly that in order for G to percolate, there has to exist
an internally spanned projection of every dimension in G (up to error terms of order Θ(k)).

Theorem 2. For all t ∈ N the following holds.

P [G percolates] ≤ P [there exists an internally spanned projection of dimension t] .

Similarly, we can derive upper bounds on the probability that a projection is internally spanned. Let
us denote by Xt the number of internally spanned projections of dimension t in G. We show that
for a certain critical dimension t∗ the expected number of internally spanned projections turns to 0.

Theorem 3. Set t∗ = 2
√
n− 2. Then,

E [Xt∗ ] = o(1).

By first moment method, the probability there is an internally spanned projection of dimension t∗
is bounded from above by its expected number. So, Theorems 2 and 3 imply the lower threshold.

The upper threshold
A sequence v = (v0, . . . , vℓ) of vertices is called sequentially span-
ning, if it satisfies the property that for any j, the subsequence
(v0, . . . , vj) spans a projection of dimension 2j in G. Crucial prop-
erties of such sequences are that they are minimum percolating and
that a majority of all minimum percolating sets is of this type. Us-
ing the second moment method, show the existence of a sequence
(v0, . . . , vn

2
), where each vertex was initially infected.

Theorem 4. Denote by Y the number of i.s.s. sequences. If

(a) E [Y ] → ∞;

(b) V [Y ] = o
(
E [Y ]

2
)
.

Then P [Y ≥ 1] → 1.

To show (a), recursively count ways to extend sequentially spanning
sequences of given length.
To show (b), for each j, count pairs of such sequences that share j
vertices.
Then, by definition, the sequence (v0, . . . , vn

2
) forms a percolating set in G.


