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If then 

We have shown (Kauffman, Oppenheim’18):

Anari, Liu, Oveis Gharan, Vinzant’19

Can efficiently sample bases of a matroid.



matroids background

fast mixing for matroids



Matroid (independent sets definition)                 

= independent sets (subsets of )

Downward closed

Independent set exchange property

such that 

= basis (subsets of )

Basis exchange property

such that 

Matroid (basis definition)                                        



Matroids

all basis have the same size (rank 

WANT: sample uniform distribution on basis.

Examples of matroids:

Spanning trees

Independent sets of vectors

Fano plane



Matroids

A ``non-example’’ of a matroid:

12 34

1 2 3 4



Spanning trees (“graphic”)



Independent sets of vectors (“representable”)



Matroids

deletion: 

ᇱ

contraction: 

ᇱ



matroids background

fast mixing for matroids



௞

௞ିଵ

௞ ௞ିଵ
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Independent set exchange property

such that 



Matroids

How do matroids of rank 2 look like?

1’s

1’s

0’s

0’s

0’s



1) fix set W

consider the chain on sets 
with up-down transition (no self loops)

௞ାଵ

௞

Stationary distribution

௞
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(for matroids of rank 2) 

1’s

1’s

0’s

0’s

0’s



1’s

1’s

0’s

0’s

0’s

1’s



Rank 3?

X(1)

X(2)

X(3)

ଵ

ଶ

ଷ

ଷ uniform

WANT: bound on ଶ for the up-down (no self-loops) chain on X(1) 

HAVE: bound on ଶ ( for the up-down (no self-loops) chain on X(2)
when restricted to sets containing element 



WANT: bound on ଶ for the up-down chain on X(1) 

HAVE: bound on ଶ ( for the up-down chain on X(2)
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Rank 3?

X(1)

X(2)

X(3)

ଵ

ଶ

ଷ



Rank 4?

X(1)

X(2)

X(3)

ଵ

ଶ

ଷ

X(4)ସ

Oppenheim’s trickle down theorem



for all local chains



Strongly log-concave distributions

distribution ௥ on subsets of size of homogeneous polynomial

ௌ ௜

௜∈ௌௌ⊆ ௡ , ௌ ୀ௥

Definition: ௥ is log-concave is concave at 1

ଶ ୘

ଶ

Definition: ௥ is strongly log-concave ௜భ ௜ೖ

Is concave at 1

Lemma: ௥ is strongly log-concave if and only if all local walks have ଶ

Corollary: uniform distribution on bases of a matroid is strongly log-concave

For any ଵ ௞





Spectral independence
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If then 

Alev, Lau’20

Anari, Liu, Oveis Gharan’20

Can efficiently sample from antiferromagnetic 2-spin models in uniqueness.



hard-core model

colorings 

encoding as simplicial complex/hypergraph

spectral independence

weak spatial mixing, strong spatial mixing



Undirected graph of maximum degree , parameter: 

Hard-core model:

distribution on independent sets of 

Can we efficiently sample from the distribution?

୼ିଵ

୼

NP-hard (Sly’10)P (Weitz’06)



hard-core model

colorings 

encoding as simplicial complex/hypergraph

spectral independence

weak spatial mixing, strong spatial mixing



Undirected graph of maximum degree , parameter: 

Colorings:

uniform distribution on q-coloring of G

Can we efficiently sample from the distribution?

NP-hard (Galanis, Stefankovic, Vigoda’14)

?

(even for triangle-free graphs)

Chen, Delcourt, Moitra, Perarnau, Postle’19
Vigoda’99
Jerrum’95

+1



hard-core model

colorings 

encoding as simplicial complex/hypergraph

spectral independence

weak spatial mixing, strong spatial mixing



Undirected graph of maximum degree , parameter: 

distribution on independent sets of 

• only allow subsets of that are valid
• on the top-level 

where is the corresponding independent set 





Undirected graph of maximum degree , parameter: 

uniform distribution on -colorings of 

• only allow subsets of that are valid
• on the top-level 

where is the corresponding coloring 



hard-core model

colorings 

encoding as simplicial complex/hypergraph

spectral independence

weak spatial mixing, strong spatial mixing
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Stationary distribution
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Stationary distribution

௞
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``Local’’ chains

``Local’’ chains (with notation matching the pairs)



What is ?
probability that a random (from the measure of the
model) assignment satisfies 
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For every partial assignment W

Influence matrix

(zero if )

If ଶ then ଶ
஼

௡ି௞



Influence matrix

If ଶ then ଶ
஼

௡ି௞

Way to bound 

௜
௜௝

௝

(௩,௕)

max row norm



(௩,௕)

Spectral independence



hard-core model

colorings 

encoding as simplicial complex/hypergraph

spectral independence

weak spatial mixing, strong spatial mixing



Weak spatial mixing

ଵ ଶ

௛→ஶ



Strong spatial mixing

ଵ ଶ

௛→ஶ

ଵ ଶ





Interesting/non-trivial even on trees. 



We understand everything (except the critical point):

WSM on trees
SSM on trees

SSM on trees SSM on general graphs
spectral independence 

All for 
୼ିଵ

୼



We understand something

WSM on trees for (Jonasson 2002)
SSM on trees for (Efthymiou, Galanis, Hayes, Stefankovic, 

Vigoda 2019)
SSM, spectral independence on general graphs for 
SSM, spectral independence on triangle-free graphs for 

(Gamarnik, Katz, Misra 2015, Chen, Galanis, Stefankovic, Vigoda 2020)



Formal connection?



Improvements for trees? For general graphs?



SSM on trees SSM on general graphs

(Weitz’06)

for hard-core model



probability that u is occupied ? 



probability that u is occupied ? 

= 2/7



probability that u is occupied ? 

= 2/7

probability that u is occupied ? 

F * F 

F8

3 4 2 * 3 

21
= 2/7=



probability that u is occupied ? 



probability that u is occupied  

probability that u is not occupied = r =
p

1-p



probability that u is occupied  

probability that u is not occupied 
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Spectral independence on trees spectral independence on general graphs

(Chen, Liu, Vigoda 2020)

for hard-core model (+general anti-ferro 2-spin models)
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establishing strong spatial mixing on trees

(Weitz 2006, Li, Lu, Yin 2013, Sinclair, Srivastava, Thurley 2014)

for hard-core model (+general anti-ferro 2-spin models)



ଵ ௗ

converges to a fixpoint

ଵ ௗ

ଵ ௗ

get closer together 

ଵ ௡
ଵ ௗ



ଵ ௗ

ଵ ௗ

get closer together 

ଵ ଵ ௗ ௗ ଵ ௡ ଵ
ଵ

ௗ
ௗ

the perturbation gets shorter
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establishing spectral independence on trees

(Chen, Liu, Vigoda 2020)

for hard-core model (+general anti-ferro 2-spin models)
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Decays by factor 



Colorings 

(Chen, Galanis, Stefankovic, Vigoda 2020)



Colorings

connection with trees missing

“computational tree recursion” (using list colorings) 



Entropic independence
Anari, Jain, Koehler, Pham, Vuong 2020

Fractional log-concavity,  sector stability
Alimohammadi, Anari, Shiragur, Vuong 2020

ଵ
ఈ

௡
ఈ is log concave

Entropy factorization, log Sobolev constants
Chen, Liu, Vigoda 2020


