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IDEA#2:  understand (Uy Dy4+1) vS (DrUp—1)

We have shown (Kauffman, Oppenheim’18):
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Anari, Liu, Oveis Gharan, Vinzant’19

Can efficiently sample bases of a matroid.



matroids background

fast mixing for matroids



Matroid (independent sets definition) Q1) = [n]

I = independent sets (subsets of [n])

Downward closed
TeEQSCT=>S5S€

Independent set exchange property

S,STel,|S|<|T|=>3a€T\SsuchthatSu{a}el

Matroid (basis definition) (Q,B) Q= |n]

B = basis (subsets of [n])
Basis exchange property

SSTEB,S+T=3a€T\S,beS\TsuchthatS\ {b}U{a}€EB



IVI a t ro i d S Distribution 7z,. on all size-r subsets of [n]

all basis have the same size (rank r) L e il
r =

WANT: sample uniform distribution on basis.

Examples of matroids:

Spanning trees

Independent sets of vectors (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,1,1)

Fano plane




Matroids

A “"non-example” of a matroid:

N\

Matroid (independent sets definition) Q.1 0 =[n]

I = independent sets (subsats of [n])

Downwardclosed
TENSCT=>S5€eN

Independent set exchange property

S,TEL|S| <|T|=>3a€T\ SsuchthatSu{a} €l

Matroid (basis definition) (9, B) 0= [n]

B = basis (subsets of [r])
Basis exchange property

S,TEB,S*T=3a€T\ S beS\TsuchthatS\ {b}u{a} €B

/™



Spanning trees (“graphic”)

Matroid (independent sets definition) Q.1 0 = [n]
I = independent sets (subsets of [n])
Downwardclosed
TEASCT=S€EN

Independent set exchange property

S,TEL|S| <|T|=>3a€T\ SsuchthatSu{a} €l

Matroid (basis definition) (Q,B) Q= [n]

B = basis(subsets of [n])
Basis exchange property

STEB,S*T=3a€T\SbeS\TsuchthatS\ {b} U{a) € B



Independent sets of vectors (“representable”)

(1,0,0), (0,1,0), (0,0,1),(1,1,0), (1,1,1)

Matroid (independent sets definition) (1) Q= [n]

I = independent sets (subsats of [n])
Downwardclosed
TENSCT=>S5€eN

Independent set exchange property

S,TEL|S| <|T| > 3a€T\ SsuchthatSu{a} €l

Matroid (basis definition) (9, B) 0= [n]

B = basis (subsetsof [n])
Basis exchange property

S,TEB,S*T=3a€T\SbeS\TsuchthatS\ {b} u{a} € B



Matroids

deletion: M — e

@\ {e} 1)
I'={S|S€l and e ¢ S}

contraction: M /e

@\ {e}. 1)

I'={S|Sufe}el}



matroids background

fast mixing for matroids



I = independent sets (subsets of [n])
Independent set exchange property

SSTeEL|S|<|T|=3a€T\SsuchthatSuU{a}el



Kauffman, Oppenheim’18

Matroids

——UpDyay — 71 = Dillyy <z, }
~ UiDes #r, 775 (I~ Dals-2) —1
How do matroids of rank 2 look like? Ify < 0then 1 —2,(D,Ur—) =

Anari, Liu, OveisGharan, Vinzant'19

Can efficiently sample basesof a matroid.

{a,c}€B={ab}€B or {b,c}E€B

{a,b} ¢ B and {b,c} ¢ B = {a,c} ¢ B

Matroid (independent sets definition) on Q= [n]

I = independent sets (subsets of [])

Downwardclosed
TENSCT=SEN

Independent set exchange property

S.,TEL|S| <|T|=>3a€T)\SsuchthatSu{a} €I

Matroid (basis definition) (Q,B) Q= [n]

B = basis(subsets of [1])
Basis exchange property

SSTEB,S*T=3a€T\S5beES\TsuchthatS\ {b}u{a}eB



IDEA#2: understand (Uka+1) VS (DkUk—l)

I E— Sees

1) fix set W

< O consider the chain on sets W U {a}
y — with up-down transition (no self loops)

7-l‘-k+1(M/ U {Cl, b})
(k + Dm (W U {a})

(for matroids of rank 2) P(a,b) =

Stationary distribution

(W U {a})
km_1 (W)
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Rank 37

3 uniform

WANT: bound on A, for the up-down (no self-loops) chain on X(1)

HAVE: bound on A, (< 0) for the up-down (no self-loops) chain on X(2)
when restricted to sets containing element a

X(3)

X(2)

X(1)



fT(DP —mn)f = (fTDV)DV2(P — 1Tm)DV/2(DV/2 )
fTDf = (fTDY/2)(DV/2f)

-1
WANT: bound on A, for the up-down chain on X(1 _ r
2 forthe e O m®=(p) ) m®

(DP)y, = m({i, k}) /2 y |771";|S§77:
M“M) L
(D) = m({i}) M
AW
—_ T
HAVE: bound on A, (< 0) for the up-down chain on X(2)
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f eigenvector of DP under D for A, -

. = o r
WANT: bound on 4, forthe up-downchainonX(1) n’k(S) - ( ) Z , (T)

T:SCT

T (DP) i, = mo({i, k})/2 Tl =r
T f =0 (D) = my({i})
HAVE: boundon A, (< 0) for the up-downchain on X(2)
when restricted to setscontaningelement a .((a.8))
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1 ({a}) 1 ({a})
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Rank 37
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Rank 47
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Oppenheim’s trickle down theorem

X(4)

X(3)

X(2)

X(1)



AL wderstond (y Dy ) 0 (0, )

Rank 4? We have shown (Kauffman, Oppenhem’18): R
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Anari, Liu, OveisGharan, Vinzant'19

Oppenheim’strickle down theorem Can efficiently sample basesof a matroid.

y <0

for all local chains



Strongly log-concave distributions

f 2 f) = HWH!

f2

distribution m,- on subsets of size r of [n] # homogeneous polynomial

f=

Definition: 7, is log-concave ~ log f is concave at 1

S€[n],|S|=r

Tl

IES

For any xq, ..., X

Definition: 1, is strongly log-concave ~ log(0x;, ...0x;, f)

Is concave at 1

Lemma: 1, is strongly log-concave if and only if all local walks have 4, < 0

Corollary: uniform distribution on bases of a matroid is strongly log-concave

Xi



Lorentzian polynomials
Petter Brandén, June Huh

We study the class of Lorentzian polynomials. The class contains homogeneous stable polynomials as well as volume
polynomials of convex bodies and projective varieties. We prove that the Hessian of a nonzero Lorentzian polynomial
has exactly one positive eigenvalue at any point on the positive orthant. This property can be seen as an analog of
Hodge--Riemann relations for Lorentzian polynomials. Lorentzian polynomials are intimately connected to matroid
theory and negative dependence properties. We show that matroids, and more generally M-convex sets, are
characterized by the Lorentzian property, and develop a theory around Lorentzian polynomials. In particular, we
provide a large class of linear operators that preserve the Lorentzian property and prove that Lorentzian measures
enjoy several negative dependence properties. We also prove that the class of tropicalized Lorentzian polynomials
coincides with the class of M-convex functions in the sense of discrete convex analysis. The tropical connection is
used to produce Lorentzian polynomials from M-convex functions. We give two applications of the general theory.
First, we prove that the homogenized multivariate Tutte polynomial of a matroid is Lorentzian whenever the parameter
g satisfies 0 < g < 1. Consequences are proofs of the strongest Mason's conjecture from 1972 and negative
dependence properties of the random cluster model model in statistical physics. Second, we prove that the
multivariate characteristic polynomial of an M-matrix is Lorentzian. This refines a result of Holtz who proved that the
coefficients of the characteristic polynomial of an M-matrix form an ultra log-concave sequence.

Comments: 60 pages, with a new remark on Question 4.9
Subjects:  Combinatorics (math.CO); Algebraic Geometry (math.AG); Probability (math.PR)
Cite as: arXiv:1902.03719 [math.CO]

(or arXiv:1902.03719v5 [math.CO] for this version) . . .
hitps:/1doi.org/10.48550/arXiv-1902.03719. @ Hodge Theory for Combinatorial Geometries

Karim Adiprasito, June Huh, Eric Katz

We prove the hard Lefschetz theorem and the Hodge-Riemann relations for a commutative ring
associated to an arbitrary matroid M. We use the Hodge-Riemann relations to resolve a conjecture of
Heron, Rota, and Welsh that postulates the log-concavity of the coefficients of the characteristic
polynomial of M. We furthermore conclude that the f-vector of the independence complex of a matroid
forms a log-concave sequence, proving a conjecture of Mason and Welsh for general matroids.

Comments: 63 pages. Minor revision
Subjects:  Combinatorics (math.CO); Algebraic Geometry (math.AG)
Cite as: arXiv:1511.02888 [math.CO]
(or arXiv:1511.02888v2 [math.CO] for this version)
https://doi.org/10.48550/arXiv.1511.02838 @



Spectral independence



Alev, Lau’20
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k
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Anari, Liu, Oveis Gharan’20

Can efficiently sample from antiferromagnetic 2-spin models in uniqueness.



hard-core model

colorings

encoding as simplicial complex/hypergraph
spectral independence

weak spatial mixing, strong spatial mixing



Hard-core model:
Undirected graph G = (V, E) of maximum degree < A, parameter: 1 > 0

distribution on independent sets of G

P(S) o AlS|
Can we efficiently sample from the distribution?

(A —1)A1
(4 -2)%
*

P (Weitz’06) NP-hard (Sly’10)




hard-core model

colorings

encoding as simplicial complex/hypergraph
spectral independence

weak spatial mixing, strong spatial mixing



Colorings:
Undirected graph G = (V, E) of maximum degree < A, parameter:q € N

uniform distribution on g-coloring of G

Can we efficiently sample from the distribution?

A 11
logA A_\/Z A A+1 ?_g A
—_——Y— 000 *? O

NP-hard (Galanis, Stefankovic, Vigoda’14) Chen, Delcourt, Moitra, Perarnau, Postle’19
Vigoda’99

Jerrum’95

(even for triangle-free graphs)



hard-core model

colorings

encoding as simplicial complex/hypergraph
spectral independence

weak spatial mixing, strong spatial mixing



Undirected graph G = (V, E) of maximum degree < A, parameter: A > 0

distribution on independent sets of ¢

P(S) o AlS|

QO={(vo)|veV,oe€{01}}

* only allow subsets of () that are valid
* on the top-level

P(A) = P(S)

where S is the corresponding independent set



Undirected graph G = (V, E) of maximum degree < A, parameter: A > 0

distribution on independent sets of G
L= 1l lra) - ) A P(S) o AlS]
Q={(v,0)|veV,oe{01}}

= L( * only allow subsets of () that are valid
* on the top-level

“A\M\(h{b ),(C,P)’(D‘p\ﬂ P(A) = P(S)

| where S is the corresponding independent set
— _/__—/
.

- 2
|+ G X + \ X

AGCRINUYY (.‘)l,LDtP)J /O\ob
>\ 0
~ — 2 V \b
P) - GO\ <



Undirected graph G = (V, E') of maximum degree < A, parameter:q € N

uniform distribution on g-colorings of G

Q={(wao)|veV,ce{12,..,q}}

* only allow subsets of () that are valid
* on the top-level

P(A) = P(1)

where T is the corresponding coloring



hard-core model

colorings

encoding as simplicial complex/hypergraph
spectral independence

weak spatial mixing, strong spatial mixing



“Local” chains Undirected graph G = (V, E) of maximum degree < A, parameter: A > 0

distribution on independent sets of G

Me+1 (W U {a, b}) P(S) o AlSI

Pla.b) = T D U ()

Q={(v,0)|veV,o€{01}}

Stationary distribution _
» only allow subsets of () that are valid

m, (W U {a}) * on the top-level

ke (W) P(4) = P(S)

where S is the corresponding independent set

“Local” chains (with notation matching the pairs)

Me+1 (W U {(w, a), (v, b)})
(k + Dme (W U {(w, @)})

P((w,a), (v, b)) =

Stationary distribution

(W U {(u,a)})
k(W)




What is T, ({ (v, a4), .., W, ar) D ? Wl=k-1

~1
(Z) probability that a random (from the measure of the
model) assignment satisfies 7(v;) = q;

n \-1
e (W U{(w @), @, b)) _ (kh1) PE@=ant@=baw)

(k + D (W U {(w, @)})

P((u,a), (v,b)) =

s —1
(k+1) (k) P(t(w) = a AW)
1 P(tlu)=aAnt(v) =bAW)

n—k P(t(u) =aAW)

-1
m(WuU{(w,a)}) _ (k) P(t(w) =aAt(v) =bAW)
k - B —

M1 (W) k(kfl) 1P(T(u)=aAW)

m(u,a) =

1 P(t(u)=aAW)

n—k+1 P(W)



For every partial assignment W

P(t(v)=b|t(u) =a) —P(t(v) =b)

(zero if u = v)

Influence matrix

(v, b)

(u, a)

If A,(M) = 0(1) then A,(local chains) < ¢

n—k

Whatism, ({ (vy,a4),...,(vg,ax) P ? Wl =k-1

(;:)-1 probability that a random (from the measure of the
model) assignment satisfies7(v;) = q;

n -1
Tea(WU{(wa),(v.b)hH _ (k - 1) Rix(%) =aAz(e)=bANW)

Pl( a). (v 2)) = (k + Dmp(W U {(w.@)))

-1
(k +1) (:) P(t(u) =a AW)

1 P(tw)=ant(@)=bAwW)
n—k

P(t(u)=aAW)

1
7 (W U {(u, @)}) (k) P(tw) =ant(v) =bAW)
- * =

a(u,a) =
kmy_ (¥ =
L k(k’il) P(t(u) = aAW)
1 P(t(u)=arw)
n—k+1 P(W)
Aley, Lau’20

— ], X e =2. yv(l—D.U
Vi T Ry -

+ kY k-1 f—

Ify, < — then1—2,(D,U,_;) = 77°©

Anari, Liu, OveisGharan’'20

Can efficiently sample from antiferromagnetic 2-spin models in uniqueness



Influence matrix

C
n—k

(v, b) If 1,(M) = 0(1) then A, (local chains) <

(u, a) e P(z(wv) =b|t(u) =a)— P (v) =b)

> 1PGW) = bt = @) - PE() = b)|

(v,b)
Way to bound p(A4):
Hard-core model:
MaXx row norm
Undirected graph G = (V, E) of maximum degree < A, parameter: A > 0
mlax : |Al] | distribution on independent sets of G
J P(S) o« AlSI
Can we efficiently sample from the distribution?

(A = l)d—l
a-2)7%

L)

P (WeitZ06) NP-hard (Siy'10)



Spectral independence

> 1PG@) = bl t(w) = @) - P(z(v) = b)|
(v,b)



hard-core model

colorings

encoding as simplicial complex/hypergraph
spectral independence

weak spatial mixing, strong spatial mixing



Weak spatial mixing

G =(V,E) G = (V,E)

max| P(c(u) = a) |6(B) = by) — P(c(u) = alo(B) = b,) | < F(dist(u, B))

limF(t) =0

h—oo



Strong spatial mixing

G =(V,E) G = (V,E)

max| P(c(u) = a) |o(B) = by) — P(c(u) = alo(B) = b,) | < F(dist(u, D))
D = {x € S|by (x) # by (x)}
limF(t) =0

h—oo



Weak spatial mixing Strong spatial mixing

G=V.E) G=(V.E) G=(V.E) G=(V,E)
O @
@, £ B @ B
@ @
max| P(c(u) = a) |6(B) = by) — P(a(u) = ala(B) = b,) | < F(dist(u,B)) max| P(c(u) = a) |6(B) = by) —P(c(u) = ala(B) = b,) | < F(dist(u,D))

D = {x € S|b,(x) # b, (x)}
#T-F(t) S ’I!i;t’n-F (t)=0

Spectral independence

> 1PG0) = b| 1) = a) - P(:(v) = B)]
(v.2)



Weak spatial mixing Strong spatial mixing

G=(V,E) G=(V.E) G=(V.E) G=(V.E)
O )
B
Q - B e B
(J @
max| P(a(u) = a) |6(B) = b,) — P(a(u) = ala(B) = b,) | < F(dist(w, B)) max| P(c(u) = a) |6(B) = by) —P(c(u) = ala(B) = b,) | < F(dist(u,D))

D = {x € §|b,(x) # b, (x)}
lim F(©) = 0 jm Fe)=0

Interesting/non-trivial even on trees.



Hard-core model:
Undirected graph G = (V, E) of maximum degree < A, parameter: A > 0

distribution on independent sets of G
P(S) « AlSI
Can we efficiently sample from the distribution?

(A _ l)‘.\—l
@-2)7

e

P (WeitZ06) NP-hard (Sly'10)

We understand everything (except the critical point):

WSM on trees
SSM on trees All for
(A — 1A
A< -
SSM on trees = SSM on general graphs (A—2)
spectral independence




Colorings:
Undirected graph G = (V, E) of maximum degree < A, parameter: g € N

uniform distribution on g-coloring of G

Can we efficiently sample from the distribution?

A IR 11
log A A—vVA A A+ ? —e]A
— & @®*: @

NP-hard {Galanis, Stefankovic, Vigoda'14) Chen, Delcourt, Moitra, Perarnau, Postle’19
. Vigoda'se
(even for triangle-freegraphs) Jerrum’os

We understand something

WSM on trees forq = A+ 1 (Jonasson 2002)
SSM on trees for g = 1.6A (Efthymiou, Galanis, Hayes, Stefankovic,
Vigoda 2019)
SSM, spectral independence on general graphs for g = 2A
SSM, spectral independence on triangle-free graphs for g = 1.74A
(Gamarnik, Katz, Misra 2015, Chen, Galanis, Stefankovic, Vigoda 2020)



Formal connection?

Spectral independence Strong spatial mixing

G=(V.E) G=(V.E)

max| P(o(u) = a) |o(B) = b,) —P(a(u) = alo(B) = b,) | < F(dist(w.D))
D = {x € 5|by(x) * b, (x)}

Y. 1PGw) = b 7w) = @) - PG(v) = b)] lim F(2) = 0
(wd) R=oc



Improvements for trees? For general graphs?

Colorings:
Undirected graph G = (V, E) of maxienum degree < 4, parameter: Q €N

wniform distribution on g-coloring of G

Can we efficiently sample from the distribution?

4 11

~Ty A=-vYa aaa (T-:)A
HO’ C

NP -nard (Galares, Stefaracwe, Vgoow'14)  Chen, Detount Motra, Pererray, Poier 19

Vigoos¥
(ewen for 17 ange Tee graghe) Jrosa

We understand something

WSM on trees for g = A+ 1 (Jonasson 2002)

SSM on trees for ¢ = 1.6A (Efthymiou, Galanis, Hayes, Stefankovic,
Vigoda 2019)

SSM, spectral independence on general graphs for ¢ = 2A

SSM, spectral independence on triangle-free graphs for ¢ = 1.74A
(Gamarnik, Katz, Misra 2015, Chen, Galanis, Stefankovic, Vigoda 2020)



for hard-core model

SSM on trees = SSM on general graphs

(Weitz’06)



probability that u is occupied ?



probability that u is occupied ?
=2/7

PP EPLPIRP Y



probability that u is occupied ?
=2/7

PP EPLPIRP Y

probability that u is occupied ?
EXFE 2%*3
F 21

2/7



\ ope . .
probability that u is occupied ?



\ ope . .
probability that u is occupied p

probability that u is not occupied

=r =
1-p




\ ope . .
probability that u is occupied
probability that u is not occupied

b &
b &
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3 38 1
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for hard-core model (+general anti-ferro 2-spin models)

Spectral independence on trees = spectral independence on general graphs

(Chen, Liu, Vigoda 2020)



Influence of u on v

Inf¥ (u - v) = 2 |P(r(v) = 1| () = L,W) — P(z(v) = 1| z(w) = 0, W)
(o)

P(u=1|W)

Wiy —

Re (W = 5 =om)

A, ) logRY(w) = Inf¥ (u > v)
v

&3 @ 1+ 1+ B

] 0 1+§= E‘ | 3;




for hard-core model (+general anti-ferro 2-spin models)

establishing strong spatial mixing on trees

(Weitz 2006, Li, Lu, Yin 2013, Sinclair, Srivastava, Thurley 2014)



Weak spatial mixing

G=(.E) G=(V.E)

max| P(c(u) = a) |6(B) = by) — P(a(u) = ala(B) = b,) | < F(dist(u,B))

'l‘i_r.nF(t):O

x =F(xq,...,%Xq)

converges to a fixpoint

A
(1T4+x)...(1+xy)

F(xq,..,xp) =

Strong spatial mixing

6 =(V.E) G=(V.E)

max| P(c(u) = a) |6(B) = b,) — P(c(u) = ale(B) = b,) | < F(dist(u,D))
D = {x € §|b,(x) # b, (x)}
?I‘iLnEF(t) =0

x =F(xq,...,%q)

y=Fy1, ., Ya)

get closer together



Strong spatial mixing

G=(V.E) G=(V.E)

max| P(¢(u) = a) |6(B) = by) — P(a(u) = ale(B) = b,) | < F(dist(u,D))
D ={x € S|b,(x) # b, (x)}
fl‘iBLF{t) =0

0 0
(x1,8%1), .., (xg,Axgq) = F(xq, ..., %), A6y —F + -+ Axy —F
dx4 dxg4

the perturbation gets shorter

x =F(xq,...,%q)

y=Fy1, . Ya)

get closer together



A wad As) = ) JUE) = B,) = Po(s) = sbaH
(1+x)...(1+xg)

d d
(IL'AII),---. (xd.m:d) - F(Il,...,rn),ﬁ.t’l FF + o +A.rdEF
Xy 1

F(xq, .., x) =

the perturbationgets shorter

1/2

d'(x) = (x(]_ + x)) x = F(xy, s Xg)

y=F(yp.ya)

getclosertogether

IV(® o Fod™1)(xy, ...,xd)||1 <7t<1



for hard-core model (+general anti-ferro 2-spin models)

establishing spectral independence on trees

(Chen, Liu, Vigoda 2020)



Inff (u - v) = z |P(t(v) =1|t(w) =1, W) —-P(w)=1]|t(u) =0,W)|
(v,b)

Inf¥(v->w)= Inf/ (v->u) Inf/ (u->w)

h(logRY () = Inf¥ (u - v)

h(log(R (rl-)))
P (log(R(r1)))

z Inf¥ (r » v) = max
v

.max P (log(R(r))) z Inf ¥ (r; - v)

Decays by factor t
[IV(® o Fod™1)(xy, ...,xd)||1 <7t<1



Colorings

(Chen, Galanis, Stefankovic, Vigoda 2020)



Colorings

connection with trees missing

“computational tree recursion” (using list colorings)

Ilv— (w,k)] = max |P(ow=k | 0p=1) —Plow=k | 0p=3)|
i,j€[q]

Y Toslvo (w, k)]

wEV\{v} kelq]

IG [’(’U

Tel) < max {Ro,c.()(Bc, ()T, c,(w) + )}

P
where R¢, r,(u) = maxpec, MaXqcr,(y) [ng LE%#C) foru € Ng(v).



Formal connection?

Spectral independence

Strong spatisl mixing

Improvements for trees? For general graphs?

[

Undirwcted gragh G = (V. ) of maniomum dogres 5 A parameter ¢ ¢ N
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> - u ” 11
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>
et Lawn Sewans vguw e et Detas Mees beee bare
Hr(s) = &) JolW) = D) = P(els) ’ LFe .
Fan ) = &) boll) = B) = P bt st T reern
s(vay
S LG b N »

We understand something

WSM on trees for g = A + 1 (Jonasson 2002)
SSM on trees for g = 1.6A (Efthymiou, Galanis, Hayes, Stefankovic,
Vigoda 2019)
SSM, spectral independence on general graphs for g = 24
SSM, spectral independence on triangle-free graphs for g = 1.74A
(Gamarnik, Katz, Misra 2015, Chen, Galanis, Stefankovic, Vigoda 2020)

Entropic independence Diw(vDisa || #Dgs1) < :—kDKL(v I 1)
Anari, Jain, Koehler, Pham, Vuong 2020

log f(x{, ..., x3) is log concave

Fractional log-concavity, sector stability
Alimohammadi, Anari, Shiragur, Vuong 2020

Entropy factorization, log Sobolev constants
Chen, Liu, Vigoda 2020



