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Does the above MC mix rapidly?

(Kauffman, Oppenheim’18, Anari, Liu, Oveis Gharan, Vinzant’19,
Alev, Lau’20,  Anari, Liu, Oveis Gharan’20)
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MAIN IDEA: analyze the spectrum inductively.
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We have shown (Kauffman, Oppenheim’18):

Anari, Liu, Oveis Gharan, Vinzant’19

Can efficiently sample bases of a matroid.
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Alev, Lau’20

Anari, Liu, Oveis Gharan’20

Can efficiently sample from antiferromagnetic 2-spin models in uniqueness.


