Partition Functions: Zeros and efficient approximation IV

Viresh Patel and Guus Regts

Summerschool on Algorithms, Dynamics, and Information Flow in Networks, Dortmund

June 27-July 1, 2022

Today we address the question: what do zeros of the polynomial have to do with hardness?

Today we address the question: what do zeros of the polynomial have to do with hardness?

$$\begin{split} \mathcal{Z}_{\Delta} := & \{\lambda \in \mathbb{C} \mid Z(G; \lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta} \} \\ \mathcal{P}_{\Delta} := & \{\lambda \in \mathbb{Q}[i] \mid \text{ approximating } |Z(G; \lambda)| \text{ is } \# \text{P-hard on } \mathcal{G}_{\Delta} \} \end{split}$$

Today we address the question: what do zeros of the polynomial have to do with hardness?

$$\begin{split} \mathcal{Z}_{\Delta} := & \{ \lambda \in \mathbb{C} \mid Z(G; \lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta} \} \\ \mathcal{P}_{\Delta} := & \{ \lambda \in \mathbb{Q}[i] \mid \text{ approximating } |Z(G; \lambda)| \text{ is } \# \text{P-hard on } \mathcal{G}_{\Delta} \} \end{split}$$

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)

Let $\Delta \geq 3$. The closure of \mathcal{Z}_{Δ} is contained in the closure of \mathcal{P}_{Δ} .

- 4 E b 4 E b

$$Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$$

э

<ロト <問ト < 目と < 目と

(Assumption)

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_T(u) = 1$ and

• 1
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

• 2
$$|T| = poly(log(1/\varepsilon) + size(y)),$$

• 3
$$Z_{T-u}(\mu) \neq 0.$$

(Assumption)

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_{T}(u) = 1$ and

• 1
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

• 2
$$|T| = poly(log(1/\varepsilon) + size(y)),$$

• 3
$$Z_{T-u}(\mu) \neq 0.$$

We want to show that

$$\overline{\mathcal{Z}_{\Delta}} \subseteq \overline{\{\mu \in \mathbb{Q}[i] \mid \mu \text{ satisfies assumptions } 1\text{--}3\}}$$

(Assumption)

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_{T}(u) = 1$ and

• 1
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

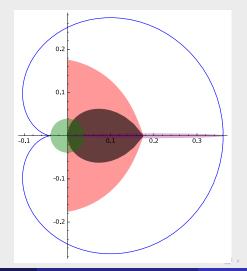
• 2
$$|T| = \text{poly}(\log(1/\varepsilon) + \text{size}(y)),$$

• 3
$$Z_{T-u}(\mu) \neq 0.$$

Instead we will show

$$\overline{\mathcal{Z}_\Delta} \subseteq \overline{\{\mu \in \mathbb{Q}[i] \mid \mu ext{ satisfies assumptions 1 and 3}\}}$$

The independence polynomial on ${\mathbb C}$



3.5 3

Let

$\mathcal{E}_{\Delta} := \{ \mu \in \mathbb{Q}[i] \mid Z_{\mathcal{G}}(\mu) = 0 \text{ for some } \mathcal{G} \in \mathcal{G}_{\Delta} \}$

臣

イロト イヨト イヨト イヨト

Let

$$\mathcal{E}_{\Delta} := \{ \mu \in \mathbb{Q}[i] \mid Z_{\mathcal{G}}(\mu) = 0 \text{ for some } \mathcal{G} \in \mathcal{G}_{\Delta} \}$$

The set \mathcal{E}_{Δ} is finite.

э

イロト イヨト イヨト イヨト

Viresh Patel and Guus Regts

Viresh Patel and Guus Regts

In Viresh's lecture we saw: $R_{G,\nu}(\lambda) \neq -1$ 'implies' $Z_G(\lambda) \neq 0$.

In Viresh's lecture we saw: $R_{G,\nu}(\lambda) \neq -1$ 'implies' $Z_G(\lambda) \neq 0$.

Lemma

Let $\lambda \in \mathbb{C}$ such that there exists a graph $G \in \mathcal{G}_{\Delta}$ such that $Z_G(\lambda) = 0$. Then there exists a graph $H \in \mathcal{G}_{\Delta}$ such that $Z_H(\lambda) = 0$ and $R_{H,v} = -1$ for each $v \in V(H)$.

Viresh Patel and Guus Regts

Lemma (Bencs, 2018)

Let $G \in \mathcal{G}_{\Delta}$. Then there exists a tree $T \in \mathcal{G}_{\Delta}$ such that $Z_G | Z_T$. In particular all zeros of Z_G are zeros of Z_T .

A (B) > A (B) > A (B) >

Lemma (Bencs, 2018)

Let $G \in \mathcal{G}_{\Delta}$. Then there exists a tree $T \in \mathcal{G}_{\Delta}$ such that $Z_G | Z_T$. In particular all zeros of Z_G are zeros of Z_T .

Corollary

Let $\lambda \in \mathbb{C}$ such that there exists a graph $G \in \mathcal{G}_{\Delta}$ such that $Z_G(\lambda) = 0$. Then there exists a graph $T \in \mathcal{G}_{\Delta}$ such that $Z_T(\lambda) = 0$ and $R_{T,v} = -1$ for a vertex $v \in V(T)$ of degree 1.

Let P_n denote the path on n vertices. Let $f_{\lambda}(z) = \lambda/(1+z)$. Then

13/23

Let P_n denote the path on n vertices. Let $f_{\lambda}(z) = \lambda/(1+z)$. Then

 $R_{P_n,v_n}=f_{\lambda}^{\circ n}(0).$

э

Let P_n denote the path on n vertices. Let $f_{\lambda}(z) = \lambda/(1+z)$. Then

$$R_{P_n,v_n}=f_{\lambda}^{\circ n}(0).$$

Lemma

Let P_n denote the path on n vertices. Let (G_i, v_i) be rooted graphs with ratios $R_{G_i,v_i} = \mu_i$. Let \hat{P}_n be the graph obtained from gluing the graph G_i onto the ith vertex of P_n . Then

Let P_n denote the path on n vertices. Let $f_{\lambda}(z) = \lambda/(1+z)$. Then

$$R_{P_n,v_n}=f_{\lambda}^{\circ n}(0).$$

Lemma

Let P_n denote the path on n vertices. Let (G_i, v_i) be rooted graphs with ratios $R_{G_i,v_i} = \mu_i$. Let \hat{P}_n be the graph obtained from gluing the graph G_i onto the *i*th vertex of P_n . Then

$$R_{\hat{P}_n,\mathbf{v}_n} = (f_{\mu_n} \circ \cdots \circ f_{\mu_1})(\mathbf{0})$$

- * ロ * * 個 * * 注 * * 注 * ・ 注 ・ の < @

Viresh Patel and Guus Regts

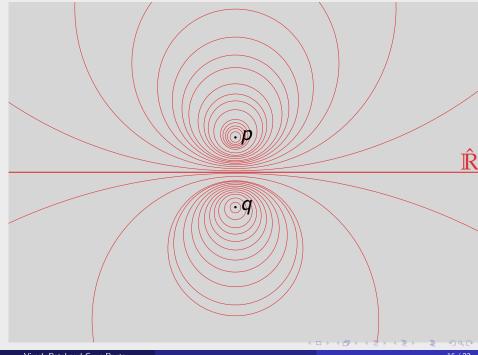
• Möbius transformations map generalized circles to generalized circles.

- Möbius transformations map generalized circles to generalized circles.
- For $\lambda < -1/4$ the Möbius transformation $f_{\lambda} : z \mapsto \lambda/(1+z)$ is conjugate to a rotation $z \mapsto e^{i\vartheta}z$.

- Möbius transformations map generalized circles to generalized circles.
- For $\lambda < -1/4$ the Möbius transformation $f_{\lambda} : z \mapsto \lambda/(1+z)$ is conjugate to a rotation $z \mapsto e^{i\vartheta}z$.
- The collection of $\lambda \in (-\infty, -1/4)$ for which the associated ϑ is irrational forms a dense set.

- Möbius transformations map generalized circles to generalized circles.
- For $\lambda < -1/4$ the Möbius transformation $f_{\lambda} : z \mapsto \lambda/(1+z)$ is conjugate to a rotation $z \mapsto e^{i\vartheta}z$.
- The collection of λ ∈ (-∞, -1/4) for which the associated θ is irrational forms a dense set. Call such λ's irrational parameters.

- Möbius transformations map generalized circles to generalized circles.
- For $\lambda < -1/4$ the Möbius transformation $f_{\lambda} : z \mapsto \lambda/(1+z)$ is conjugate to a rotation $z \mapsto e^{i\vartheta}z$.
- The collection of λ ∈ (-∞, -1/4) for which the associated θ is irrational forms a dense set. Call such λ's irrational parameters.
- For an irrational parameter λ , the complex plane \mathbb{C} is foliated with generalized circles on which f_{λ} acts conjugately to an irrational rotation.



Suppose now that $\mu\in \mathcal{Z}_{\Delta}.$ We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

Suppose now that $\mu\in \mathcal{Z}_{\Delta}.$ We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

is dense in \mathbb{C} .

• There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.

Suppose now that $\mu\in \mathcal{Z}_{\Delta}.$ We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.

Suppose now that $\mu\in \mathcal{Z}_{\Delta}.$ We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.
- C generalized circle: if $w \in C \cap \mathcal{R}_{\Delta}(\mu')$, then $\mathcal{R}_{\Delta}(\mu')$ is dense in C.

Suppose now that $\mu\in \mathcal{Z}_{\Delta}.$ We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.
- C generalized circle: if $w \in C \cap \mathcal{R}_{\Delta}(\mu')$, then $\mathcal{R}_{\Delta}(\mu')$ is dense in C.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mathbb{R} \cup \{\infty\}$.

Suppose now that $\mu \in \mathcal{Z}_{\Delta}$. We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.
- C generalized circle: if $w \in C \cap \mathcal{R}_{\Delta}(\mu')$, then $\mathcal{R}_{\Delta}(\mu')$ is dense in C.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mathbb{R} \cup \{\infty\}$.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mu' \cdot \mathbb{R} \cup \{\infty\}$.

Suppose now that $\mu \in \mathcal{Z}_{\Delta}$. We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.
- C generalized circle: if $w \in C \cap \mathcal{R}_{\Delta}(\mu')$, then $\mathcal{R}_{\Delta}(\mu')$ is dense in C.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mathbb{R} \cup \{\infty\}$.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mu' \cdot \mathbb{R} \cup \{\infty\}$.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in a neighbourhood U_{∞} of ∞ .

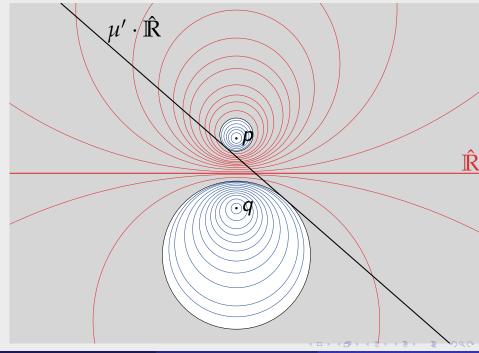
Implementations

Suppose now that $\mu \in \mathcal{Z}_{\Delta}$. We want to show that for some μ' near μ the set

$$\mathcal{R}_\Delta(\mu'):=\{ {\sf R}_{{\sf T},{\sf v}}(\mu')\mid {\sf T}\in\mathcal{G}_\Delta ext{ tree, } {\sf deg}_{{\sf T}}({\sf v})=1\}$$

is dense in \mathbb{C} .

- There exists a rooted tree (T, v) with deg_T(v) = 1 and $R_{T,v}(\mu) = -1$.
- There exists μ' near μ such that $\lambda := R_{T,\nu}(\mu')$ is an irrational parameter.
- C generalized circle: if $w \in C \cap \mathcal{R}_{\Delta}(\mu')$, then $\mathcal{R}_{\Delta}(\mu')$ is dense in C.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mathbb{R} \cup \{\infty\}$.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in $\mu' \cdot \mathbb{R} \cup \{\infty\}$.
- $\mathcal{R}_{\Delta}(\mu')$ is dense in a neighbourhood U_{∞} of ∞ .
- $\mathcal{R}_{\Delta}(\mu')$ is dense in \mathbb{C} .



Viresh Patel and Guus Regts

イロト 不得下 イヨト イヨト

イロト 不得下 イヨト イヨト

Theorem (de Boer, Buys, Guerini, Peters, R.) The set { $\mu \mid \mathcal{R}_{\Delta}(\mu)$ is dense in C} is open.

< ロト < 同ト < 三ト < 三ト

Theorem (de Boer, Buys, Guerini, Peters, R.) The set { $\mu \mid \mathcal{R}_{\Delta}(\mu)$ is dense in C} is open.

(Remark)

 $\mathcal{D}_{\Delta} := \{ \mu \in \mathbb{C} \mid \mathcal{R}_{\Delta}(\mu) \text{ is dense in } \mathbb{C} \}$

< 日 > < 同 > < 回 > < 回 > .

Theorem (de Boer, Buys, Guerini, Peters, R.) The set $\{\mu \mid \mathcal{R}_{\Delta}(\mu) \text{ is dense in } \mathbb{C}\}$ is open.

(Remark)

$$\mathcal{D}_{\Delta} := \{ \mu \in \mathbb{C} \mid \mathcal{R}_{\Delta}(\mu) \text{ is dense in } \mathbb{C} \}$$

We showed:

The closure of \mathcal{Z}_{Δ} is contained in the closure of \mathcal{D}_{Δ} .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem (de Boer, Buys, Guerini, Peters, R.) The set $\{\mu \mid \mathcal{R}_{\Delta}(\mu) \text{ is dense in } \mathbb{C}\}$ is open.

(Remark)

$$\mathcal{D}_{\Delta} := \{ \mu \in \mathbb{C} \mid \mathcal{R}_{\Delta}(\mu) \text{ is dense in } \mathbb{C} \}$$

We showed:

The closure of \mathcal{Z}_{Δ} is contained in the closure of \mathcal{D}_{Δ} . This is in fact an equality!

イロト 不得 ト イヨト イヨト

(Assumption)

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_{T}(u) = 1$ and

• 1
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

• 2
$$|T| = \operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y)),$$

• 3
$$Z_{T-u}(\mu) \neq 0.$$

Addressing the algorithmic part and \bullet 2 relies on properties of Möbius transformations and is quite general.

・ロト・(型ト・(型ト・(型ト・(ロト)

Viresh Patel and Guus Regts

臣

イロト イヨト イヨト イヨト