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Introduction

Today we address the question: what do zeros of the polynomial have to
do with hardness?

Z∆ :={λ ∈ C | Z (G ; λ) = 0 for some G ∈ G∆}
P∆ :={λ ∈ Q[i ] | approximating |Z (G ; λ)| is #P-hard on G∆}

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)

Let ∆ ≥ 3. The closure of Z∆ is contained in the closure of P∆.
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Short recap of yesterday’s talk

ZG (T )(µ) ∼= ZT−u(µ)
(
ZG−v (µ) + yZG\N [v ](µ)

)
.
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Assumption on µ

(Assumption)

Let ∆ ≥ 4. Assume that µ is such that on input of any y ∈ Q[i ] and
ε ∈ (0, 1) we can compute in time poly(log(1/ε) + size(y)) a rooted tree
(T , u) ∈ G∆ such that degT (u) = 1 and

• 1 |RT ,u(µ)− y | ≤ ε,

• 2 |T | = poly(log(1/ε) + size(y)),

• 3 ZT−u(µ) 6= 0.

We want to show that

Z∆ ⊆ {µ ∈ Q[i ] | µ satisfies assumptions 1–3}
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Assumption on µ

(Assumption)

Let ∆ ≥ 4. Assume that µ is such that on input of any y ∈ Q[i ] and
ε ∈ (0, 1) we can compute in time poly(log(1/ε) + size(y)) a rooted tree
(T , u) ∈ G∆ such that degT (u) = 1 and

• 1 |RT ,u(µ)− y | ≤ ε,

• 2 |T | = poly(log(1/ε) + size(y)),

• 3 ZT−u(µ) 6= 0.

Instead we will show

Z∆ ⊆ {µ ∈ Q[i ] | µ satisfies assumptions 1 and 3}
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The independence polynomial on C

NOTE ON THE ZERO-FREE REGION OF THE HARD-CORE MODEL 3

Figure 1. Zero-free regions for the independence polynomial of graphs
of maximal degree at most � = 10. The green domain is Shearer’s disk,
the brown berry-shape domain is DPR and the red one is our new domain.
The blue curve is the boundary of U9.

2. Preliminaries

Our proof of Theorem 1.4 is inspired by the proof of Theorem 1.3, but we simplify
some arguments and add some extra ideas. One of the simplifications is based on the
observation that it is enough to prove Theorem 1.4 for trees as the following lemma
shows.

Lemma 2.1 (F. Bencs [2]). For every graph G with maximum degree at most � there
exists a tree TG with maximum degree at most � such that ZG(�) divides ZTG

(�) as a
polynomial.

There are many choices for the tree TG in Lemma 2.1. This lemma is implicit in the
work of D. Weitz [9] and in the work of A. D. Scott and A. D. Sokal [6], but the above
algebraic formulation is due to F. Bencs [2].

Given a tree T with maximum degree � � 2 let us pick one of its leaf as a root vertex
v. Then every vertex has at most � � 1 children. If T 0 is a subtree of T then we can
choose a root vertex of T 0 in a natural way: the vertex v0 closest to v. Following H.
Peters and G. Regts [5] for a fixed � let us introduce the quantity

RG,v =
�ZG\N [v](�)

ZT�v(�)
.

Note that for an arbitrary graph G and vertex v we have

ZG(�) = ZG�v(�) + �ZG�N [v](�),

where N [v] = N(v)[ {v}, the closed neighborhood of v. Hence ZG(�) 6= 0 if and only if
RG,v 6= �1. Now if T 0 is a tree with root vertex v0, and u1, . . . , uk are the neighbours of
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Addressing • 3

Let
E∆ := {µ ∈ Q[i ] | ZG (µ) = 0 for some G ∈ G∆}

Lemma

The set E∆ is finite.
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Addressing • 1: relating zeros with ratios

In Viresh’s lecture we saw: RG ,v (λ) 6= −1 ‘implies’ ZG (λ) 6= 0.

Lemma

Let λ ∈ C such that there exists a graph G ∈ G∆ such that ZG (λ) = 0.
Then there exists a graph H ∈ G∆ such that ZH(λ) = 0 and RH,v = −1
for each v ∈ V (H).

Viresh Patel and Guus Regts 10 / 23



Addressing • 1: relating zeros with ratios

In Viresh’s lecture we saw: RG ,v (λ) 6= −1 ‘implies’ ZG (λ) 6= 0.

Lemma

Let λ ∈ C such that there exists a graph G ∈ G∆ such that ZG (λ) = 0.
Then there exists a graph H ∈ G∆ such that ZH(λ) = 0 and RH,v = −1
for each v ∈ V (H).

Viresh Patel and Guus Regts 10 / 23



Viresh Patel and Guus Regts 11 / 23



Zeros of graphs are zeros of trees

Lemma (Bencs, 2018)

Let G ∈ G∆. Then there exists a tree T ∈ G∆ such that ZG |ZT . In
particular all zeros of ZG are zeros of ZT .

Corollary

Let λ ∈ C such that there exists a graph G ∈ G∆ such that ZG (λ) = 0.
Then there exists a graph T ∈ G∆ such that ZT (λ) = 0 and RT ,v = −1
for a vertex v ∈ V (T ) of degree 1.
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Paths and Möbius transformations

Lemma

Let Pn denote the path on n vertices. Let fλ(z) = λ/(1 + z). Then

RPn,vn = f ◦nλ (0).

Lemma

Let Pn denote the path on n vertices. Let (Gi , vi ) be rooted graphs with
ratios RGi ,vi = µi . Let P̂n be the graph obtained from gluing the graph Gi

onto the ith vertex of Pn. Then

RP̂n,vn
= (fµn ◦ · · · ◦ fµ1)(0)
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Intermezzo on Möbius transformations

(Some facts)

Möbius transformations map generalized circles to generalized circles.

For λ < −1/4 the Möbius transformation fλ : z 7→ λ/(1 + z) is
conjugate to a rotation z 7→ e iϑz .

The collection of λ ∈ (−∞,−1/4) for which the associated ϑ is
irrational forms a dense set. Call such λ′s irrational parameters.

For an irrational parameter λ, the complex plane C is foliated with
generalized circles on which fλ acts conjugately to an irrational
rotation.
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Intermezzo on Möbius transformations

(Some facts)
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Möbius transformations map generalized circles to generalized circles.
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For λ < −1/4 the Möbius transformation fλ : z 7→ λ/(1 + z) is
conjugate to a rotation z 7→ e iϑz .

The collection of λ ∈ (−∞,−1/4) for which the associated ϑ is
irrational forms a dense set. Call such λ′s irrational parameters.

For an irrational parameter λ, the complex plane C is foliated with
generalized circles on which fλ acts conjugately to an irrational
rotation.

Viresh Patel and Guus Regts 15 / 23
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Implementations

Suppose now that µ ∈ Z∆. We want to show that for some µ′ near µ the
set

R∆(µ
′) := {RT ,v (µ

′) | T ∈ G∆ tree, degT (v) = 1}
is dense in C.

There exists a rooted tree (T , v) with degT (v) = 1 and
RT ,v (µ) = −1.

There exists µ′ near µ such that λ := RT ,v (µ
′) is an irrational

parameter.

C generalized circle: if w ∈ C ∩R∆(µ
′), then R∆(µ

′) is dense in C .

R∆(µ
′) is dense in R∪ {∞}.

R∆(µ
′) is dense in µ′ ·R∪ {∞}.

R∆(µ
′) is dense in a neighbourhood U∞ of ∞.

R∆(µ
′) is dense in C.
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Nearly there

We just proved that for each µ ∈ Z∆ there exists µ′ arbitrarily close to µ
such that R∆(µ

′) is dense in C.

We want µ′ to be rational!

Theorem (de Boer, Buys, Guerini, Peters, R.)

The set {µ | R∆(µ) is dense in C} is open.

(Remark)

D∆ := {µ ∈ C | R∆(µ) is dense in C}
We showed:
The closure of Z∆ is contained in the closure of D∆. This is in fact an
equality!
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Addressing • 2

(Assumption)

Let ∆ ≥ 4. Assume that µ is such that on input of any y ∈ Q[i ] and
ε ∈ (0, 1) we can compute in time poly(log(1/ε) + size(y)) a rooted tree
(T , u) ∈ G∆ such that degT (u) = 1 and

• 1 |RT ,u(µ)− y | ≤ ε,

• 2 |T | = poly(log(1/ε) + size(y)),

• 3 ZT−u(µ) 6= 0.

Addressing the algorithmic part and • 2 relies on properties of Möbius
transformations and is quite general.
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Thank you for your attention!
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