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Today we address the question: what do zeros of the polynomial have to
do with hardness?

Zpr:={A€C| Z(G;A) =0 for some G € Gp}
Pa:={A € QJi] | approximating |Z(G; )| is #P-hard on Gp}

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)

Let A > 3. The closure of Zp is contained in the closure of Ph.
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Short recap of yesterday's talk

Za(ry (1) = Zr o) (Zo (1) + v Zawp (1)) -
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(Assumption)

Let A > 4. Assume that yu is such that on input of any y € Q[i] and

e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Ga such that degy(u) =1 and

o1 [Rru(p)—yl<e
e 2 |T| = poly(log(1/¢) +size(y)),
*3 ZTfu(l’l) 7& 0.
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(Assumption)

Let A > 4. Assume that yu is such that on input of any y € Q[i] and

e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Ga such that degy(u) =1 and

o1 [Rru(p)—yl<e
e 2 |T| = poly(log(1/¢) +size(y)),
*3 ZTfu(l’l) 7& 0.

Instead we will show

Zx C {p € Qli] | p satisfies assumptions 1 and 3}
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The independence polynomial on C
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Addressing e 3
Let

En:={p €Qli]| Zs(u) =0 for some G € Gp}
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Addressing e 3
Let
Lemma

En:={p €Qli]| Zs(u) =0 for some G € Gp}
The set Ep s finite.
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Addressing o 1: relating zeros with ratios

In Viresh's lecture we saw: Rg ,(A) # —1 ‘implies’ Zg(A) #0
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In Viresh's lecture we saw: Rg ,(A) # —1 ‘implies’ Zg(A) # 0. J

Lemma
Let A € C such that there exists a graph G € Gy such that Zg(A) = 0.

Then there exists a graph H € Ga such that Zy(A) =0 and Ry, = —1
for each v € V(H).
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Lemma (Bencs, 2018)

Let G € Ga. Then there exists a tree T € G such that Zg|Zt. In
particular all zeros of Zg are zeros of Z7.
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Lemma (Bencs, 2018)

Let G € Ga. Then there exists a tree T € G such that Zg|Zt. In
particular all zeros of Z¢ are zeros of Zt.

Corollary

Let A € C such that there exists a graph G € Gy such that Zg(A) = 0.
Then there exists a graph T € Gy such that Zr(A) =0 and Rr, = —1
for a vertex v € V(T) of degree 1.
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Paths and Mobius transformations

Lemma

Let P, denote the path on n vertices. Let fy(z) = A/(1+ z). Then
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Lemma

Let P, denote the path on n vertices. Let (G;, v;) be rooted graphs with
ratios Rg, . = ui. Let P, be the graph obtained from gluing the graph G;
onto the ith vertex of P,. Then
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Lemma
Let P, denote the path on n vertices. Let fy(z) = A/(1+ z). Then

RanVn = f/\on(o)

Lemma

Let P, denote the path on n vertices. Let (G;, v;) be rooted graphs with
ratios Rg, . = ui. Let P, be the graph obtained from gluing the graph G;
onto the ith vertex of P,. Then

Rlsn.Vn = (f.”{" ©oeo@ fyl)(o)
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(Some facts)

@ Mobius transformations map generalized circles to generalized circles.
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(Some facts)

@ Mobius transformations map generalized circles to generalized circles.

e For A < —1/4 the Mébius transformation fy : z — A/(1+ z) is
conjugate to a rotation z — e/®z.

@ The collection of A € (—o0, —1/4) for which the associated ¢ is
irrational forms a dense set. Call such A’s irrational parameters.

@ For an irrational parameter A, the complex plane C is foliated with
generalized circles on which f) acts conjugately to an irrational
rotation.
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Suppose now that y € Z5. We want to show that for some p near y the
set

Ra() = {Rr (1) | T € Gy tree, degr(v) = 1}

is dense in C.
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Suppose now that y € Z5. We want to show that for some p near y the
set

Ra(w') :={Rr (4) | T € Gn tree, degy(v) =1}

is dense in C.

@ There exists a rooted tree (T, v) with deg+(v) =1 and

RT,v(V) = =1,
@ There exists ¢’ near y such that A := Ry, (¢') is an irrational
parameter.

o C generalized circle: if w € CNRA(p'), then Ra(y') is dense in C.
@ Ra(y') is dense in RU {oo}.
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Nearly there

We just proved that for each y € Z, there exists y’ arbitrarily close to p
such that Ra(y) is dense in C.
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We just proved that for each y € Z, there exists y’ arbitrarily close to p
such that Ra(p) is dense in C. We want 1/ to be rational!

Theorem (de Boer, Buys, Guerini, Peters, R.)

The set {u | Ra(p) is dense in C} is open.
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We just proved that for each u € Z, there exists p’ arbitrarily close to u
such that Ra(p) is dense in C. We want 1/ to be rational!

Theorem (de Boer, Buys, Guerini, Peters, R.)
The set {u | Ra(p) is dense in C} is open.

(Remark)

Dp:={p € C|Ra(u) is dense in C}

We showed:
The closure of Z4 is contained in the closure of Dy.
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We just proved that for each u € Z, there exists p’ arbitrarily close to u
such that Ra(p) is dense in C. We want 1/ to be rational!

Theorem (de Boer, Buys, Guerini, Peters, R.)
The set {u | Ra(p) is dense in C} is open.

(Remark)

Dp:={p € C|Ra(u) is dense in C}

We showed:
The closure of Z4 is contained in the closure of Da. This is in fact an
equality!
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(Assumption)

Let A > 4. Assume that y is such that on input of any y € Q[i] and

¢ € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and

o1 [Rru(p) —yl<e
e 2 |T| = poly(log(1/€) + size(y)),
*3 ZT—U(V) # 0.

Addressing the algorithmic part and e 2 relies on properties of Mobius
transformations and is quite general.
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Thank you for your attention!
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