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Introduction
In the previous two lectures:
algorithms.

Absence of zeros for partition functions = efficient approximation
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Introduction
In the previous two lectures:
algorithms.

Absence of zeros for partition functions = efficient approximation
This and the next lecture:

What about presence of zeros?
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The matching polynomial of a graph G = (V/, E) is defined as

Mg (z) = Z myz¥
k>0

my denotes the number of matchings with k edges.
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The matching polynomial of a graph G = (V/, E) is defined as

Mg (z) = Z myz¥
k>0

my denotes the number of matchings with k edges.

Theorem (Heilmann and Lieb, 1972)
Let A > 3. Then for any graph G € Gu, and any z ¢ (—oc0, — ;= ),

28-1)
Mg (z) # 0 and this is tight.

Theorem (Bezakova, Galanis, Goldberg Stefankovig, 2021)

Let A > 3 and let z < ——2— be rational. Approximating the absolute

aB-1)
value of Mg (z) for G € Gy is #P-hard.

4

Viresh Patel and Guus Regts 3/20



The partition function of the ferromagnetic Ising model of a graph
G = (V,E) is defined as

Zg(A,b) =) AlS|pe(s.V\S)
Scv

e(S, V'\ S) denotes the number of edges across the cut defined by S.
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The partition function of the ferromagnetic Ising model of a graph
G = (V,E) is defined as

Zg(A,b) =) AlS|pe(s.V\S)
Scv

e(S, V'\ S) denotes the number of edges across the cut defined by S.

Theorem (Peters, R., 2020)

Let b € (0,1). Then there exists A, > 0 such that the roots Zg(A, b) as
a polynomial in A as G ranges over G, are dense in the unit circle.

Viresh Patel and Guus Regts 4/20



The partition function of the ferromagnetic Ising model of a graph
G = (V,E) is defined as

Zg(A,b) =) AlS|pe(s.V\S)
Scv

e(S, V'\ S) denotes the number of edges across the cut defined by S.

Theorem (Peters, R., 2020)

Let b € (0,1). Then there exists A, > 0 such that the roots Zg(A, b) as
a polynomial in A as G ranges over G, are dense in the unit circle.

Theorem (Buys, Galanis, Patel, R., 2022)

Let be (0,1)NQ. Let A € Q[i] \ R such that |A| = 1. Approximating
the absolute value of Zg(A, b) for G € Gp, is #P-hard.
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The independence polynomial on C
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Zy:={A€C | Z(G;A) =0 for some G € Gp}
Pa:={A € QJi] | approximating |Z(G; )| is #P-hard on Gp}
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Zy:={A€C | Z(G;A) =0 for some G € Gp}
Pa:={A € QJi] | approximating |Z(G; )| is #P-hard on Gp}

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)
Let A > 3. The closure of Zp is contained in the closure of Ph.
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State of the art for the independence polynomial as
A — o0
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Ingredients for ‘zeros implies hardness’ for the independence polynomial on

C.
@ Why is approximating as hard as exact computing?
@ What do the complex zeros have to do with this?
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Let A € Q[i] and A > 4.

Name #Hardcorenorm(A, A).
Instance A graph G € G,.

Output If Zg(A) = 0 the algorithm may output any rational number;
otherwise the algorithm must output a rational number N such that

o < |1Z6(A)|/N < 1.001.
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Let A € Q[i] and A > 4.

Name #Hardcorenorm(A, A).
Instance A graph G € G,.

Output If Zg(A) = 0 the algorithm may output any rational number;
otherwise the algorithm must output a rational number N such that

o < |1Z6(A)|/N < 1.001.

We will show that for certain A's, having acces to an algorithm that solves
#Hardcorenorm(A, A) in polynomial time, we can compute Zg(A) exactly
in time polynomial in |V/(G)| for graphs G € Gs.
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Reducing approximate counting to exact counting: ratios |

Let 4 € Q[i] and H € G3. We want to compute Zy(u) exactly.
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Let u € Q[i] and H € G3. We want to compute Zy(p) exactly. |

Lemma

Suppose we have acces to an algorithm that on input of a graph G € G3
outputs numbers r € Q[i] and b € {0,1} in time polynomial in |V (G)|
such that
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Let u € Q[i] and H € G3. We want to compute Zy(p) exactly. |

Lemma

Suppose we have acces to an algorithm that on input of a graph G € G3
outputs numbers r € Q[i] and b € {0,1} in time polynomial in |V (G)|
such that

o if Zg\wjy (#) # 0, then b= 1 and r = %
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Let u € Q[i] and H € G3. We want to compute Zy(p) exactly. |

Lemma

Suppose we have acces to an algorithm that on input of a graph G € G3
outputs numbers r € Q[i] and b € {0,1} in time polynomial in |V (G)|
such that

o if Zg\wjy (#) # 0, then b= 1 and r = zGZ\Z[(ffgu)

o if Zo\jy) (1) = 0 and Zg_, (i) # 0, then b= 0 and r = 725Uy,

Then Zg(u) can be computed in time polynomial in |V (G)|.
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Reducing approximate counting to exact counting: ratios |
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Reducing approximate counting to exact counting: ratios |
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '

A SRR T Zen, (M)
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '

A= =
ZLoM(A) Zc_v(A)

We have

Zs(A)
Za\njv)(A)
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '

A= =
ZLoM(A) Zc_v(A)

We have

Zg(M) AZa\nv)(A) + Z6-v (M)
Zg\npv (M) Zg\npv (M)
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '

A= =
ZLoM(A) Zc_v(A)

We have
Zs(A)  _ MawyM) +Ze-(A) /\(H— 1 )
Zg\npv (M) Zg\npv (M) Re,v
AZ A) 4+ Ze (A
Zg(A) _ M) + Ze—( ):RGV+1
ZG—V()\) ZG—V(/\) '
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Let (G, v) be a rooted graph. The ratio Rg , is the rational function

ZLn(A) Mgy (M) '

A= =
ZLoM(A) Zc_v(A)

We have
Zs(A)  _ MawyM) +Ze-(A) N (1+ 1 )
Zg\npv (M) Zg\npv (M) Re.v
Ze(A)  AMowp(A) +Z-v(A) =
— — RG,v +1
ZG—V()\) ZG—V(/\) |
It thus suffices to be able to compute Rg , in the previous lemma. J
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(Assumption)

Let A > 4. Assume that y is such that on input of any y € Q[i] and
e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and
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° |RT,u(V) _)/‘ <g,
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(Assumption)

Let A > 4. Assume that y is such that on input of any y € Q[i] and
e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and

° |RT,u<.u) -yl <e
o |T| = poly(log(1/¢) + size(y)),
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(Assumption)

Let A > 4. Assume that y is such that on input of any y € Q[i] and
e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and

° |RT,u<.u) _)/‘ <eg,

o |T| = poly(log(1/¢) + size(y)),

O ZT—u(V) # 0.
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(Assumption)
Let A > 4. Assume that y is such that on input of any y € Q[i] and
e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and
° |RT,U(V) _)/‘ <eg,
o |T| = poly(log(1/¢) + size(y)),
C ZT—u(H) # 0.

Given (G, v) € Gz and (T, u) as above make a new graph G(T) € G, by
identifying u with v.
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(Assumption)
Let A > 4. Assume that y is such that on input of any y € Q[i] and
e € (0,1) we can compute in time poly(log(1/¢) + size(y)) a rooted tree
(T, u) € Gp such that degy(u) =1 and
° |RT,U(V) _)/‘ <eg,
o |T| = poly(log(1/¢) + size(y)),
C ZT—u(H) # 0.

Given (G, v) € Gz and (T, u) as above make a new graph G(T) € G, by
identifying u with v. Then

Zory (1) = Zr () (Zo (1) + yZawwp (1)) -
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search |

Reducing exact counting approximate counting: binary

Zo(1y (1) = Zr—u(p) (Zo-u (1) + yZo\p) () ) -

(=} (= = DA
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search |

Reducing exact counting approximate counting: binary

Zo(1y (1) = Zr—u(p) (Zo-u (1) + yZo\p) () ) -

Write A = Zg\np,)(#) and B = Zg—,(p). Define f(y) = Ay + B.

(=} (= = DA
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search |

Reducing exact counting approximate counting: binary

Zo(1y (1) = Zr—u(p) (Zo-u (1) + yZo\p) () ) -
that provided A # 0,

Write A = Zg\nj,)(#) and B = Zg—, (). Define f(y) = Ay + B. Note

f(y) =0iffy = —B/A.
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Zo(ry(W) = Zr—u(1) (Ze-v (W) + yZa\wp (1)) -

Write A = Zg\n(,)(#) and B = Zg_, (). Define f(y) = Ay + B. Note
that provided A # 0,

f(y) =0iffy = —B/A.

Using an algorithm for #Hardcorenorm(, A) we can compute an
17-approximation f(y) to |f(y)| (recall 7 = 1.001)
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Let A = x + iy € Q[i] be fixed. Let G = (V, E) be an n-vertex graph.
Then

o |Zg(A)| < 200,
o the bit size of the number Zg(A) is O(n),
o if Zg()t) 75 0, then |ZG(/\>| > 2—0(n)
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search |l

Reducing exact counting approximate counting: binary

Assume A # 0. Denote y* = —B/A. Note that since y € Q[i] we must
have that y* is contained in some square box S of diameter
D = 20(V(G)]) with center m.
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Assume A # 0. Denote y* = —B/A. Note that since y € Q[i] we must
have that y* is contained in some square box S of diameter
D = 20UV(G)D) with center m.

Let yy = m—4yD y>» = m~+4yD. Then

F(y1) = f(v2) > 1Al (1 — y*| = ly2 = y*| = 24D)
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Assume A # 0. Denote y* = —B/A. Note that since y € Q[i] we must
have that y* is contained in some square box S of diameter
D = 20UV(G)D) with center m.

Let yy = m—4yD y>» = m~+4yD. Then

F(y1) = f(v2) > 1Al (1 — y*| = ly2 = y*| = 24D)

Suppose now that f(y;) < f(y2). Then
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Assume A # 0. Denote y* = —B/A. Note that since y € Q[i] we must
have that y* is contained in some square box S of diameter
D = 20UV(G)D) with center m.

Let yy = m—4yD y>» = m~+4yD. Then

F(y1) = f(v2) > 1Al (1 — y*| = ly2 = y*| = 24D)

Suppose now that f(y;) < f(y2). Then y* cannot be contained in the
cone of 120° centered at y» pointing towards y;.
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S
O
o
N
<

Viresh Patel and Guus Regts 18 /20



After O(|V(G)|) many steps the initial box S shrinks down to a box S’ of

diameter
D) = (7/8)0(‘V(G)DD — 2= 0(V(6)]).
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After O(|V(G)|) many steps the initial box S shrinks down to a box S’ of

diameter
D) = (7/8)0(‘V(G)DD — 2= 0(V(6)]).

o If A#0, then for any y € S'\ {y*}, f(y) < (1 +7)|A|D'.

Viresh Patel and Guus Regts 19 /20



After O(|V(G)|) many steps the initial box S shrinks down to a box S’ of

diameter
D' = (7/8)°UV(G)) p = o= 0(V(E)]),

o If A#0, then for any y € S'\ {y*}, f(y) < (1 +7)|A|D'.

o If A=0and B #0, then forany y € S, f(y) > (1+17)|B|.
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After O(|V(G)|) many steps the initial box S shrinks down to a box S’ of

diameter
D' = (7/8)°UV(C p = 2=0(IV(e),

o If A#0, then for any y € S'\ {y*}, f(y) < (1 +7)|A|D'.

o If A=0and B # 0, then forany y € S, f(y) > (1 +17)|B|.
Since |B] = Q(2~1V()l) and |A| = 0(2IV(®)]), we can thus determine if
A # 0 or not by computing f(y) for two values y € S’
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After O(|V(G)|) many steps the initial box S shrinks down to a box S’ of

diameter
D' = (7/8)°UV(C p = 2=0(IV(e),

o If A#0, then for any y € S'\ {y*}, f(y) < (1 +7)|A|D'.

o If A=0and B # 0, then forany y € S, f(y) > (1 +17)|B|.
Since |B] = Q(2~1V()l) and |A| = 0(2IV(®)]), we can thus determine if
A # 0 or not by computing f(y) for two values y € S’

o If A+ 0 (and thus y* is contained in the initial box),
we can determine y* exactly (being the unique complex number with
rational coordinates whose denominators are bounded by 20(‘V(G)|).)
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Since ¢ = 2-0(V(G)D), having an poly-time algorithm for
#Hardcorenorm(, A), the box shrinking procedure gives us a polynomial
time algorithm to detect whether A = 0 or not and compute

1/y* = —A/ B provided not both A and B are equal to 0.
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Since ¢ = 2-0(V(G)D), having an poly-time algorithm for
#Hardcorenorm(, A), the box shrinking procedure gives us a polynomial
time algorithm to detect whether A = 0 or not and compute

1/y* = —A/ B provided not both A and B are equal to 0.

(Summary)
@ Use ‘box shrinking’ to compute ratios Rg, , exactly.

@ Use ratios to compute Zy(u) exactly with telescoping product.
o Be careful when and where to ‘trust’ the algorithm.
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Thank you for your attention!
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