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Introduction

In the previous two lectures:
Absence of zeros for partition functions ⇒ efficient approximation
algorithms.

This and the next lecture:
What about presence of zeros?
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The matching polynomial

The matching polynomial of a graph G = (V ,E ) is defined as

MG (z) = ∑
k≥0

mkz
k

mk denotes the number of matchings with k edges.

Theorem (Heilmann and Lieb, 1972)

Let ∆ ≥ 3. Then for any graph G ∈ G∆, and any z /∈ (−∞,− 1
4(∆−1) ),

MG (z) 6= 0 and this is tight.

Theorem (Bezáková, Galanis, Goldberg Štefankovič, 2021)

Let ∆ ≥ 3 and let z < − 1
4(∆−1) be rational. Approximating the absolute

value of MG (z) for G ∈ G∆ is #P-hard.
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The partition function of the ferromagnetic Ising model

The partition function of the ferromagnetic Ising model of a graph
G = (V ,E ) is defined as

ZG (λ, b) = ∑
S⊆V

λ|S |be(S ,V \S)

e(S ,V \ S) denotes the number of edges across the cut defined by S .

Theorem (Peters, R., 2020)

Let b ∈ (0, 1). Then there exists ∆b > 0 such that the roots ZG (λ, b) as
a polynomial in λ as G ranges over G∆b

are dense in the unit circle.

Theorem (Buys, Galanis, Patel, R., 2022)

Let b ∈ (0, 1) ∩Q. Let λ ∈ Q[i ] \R such that |λ| = 1. Approximating
the absolute value of ZG (λ, b) for G ∈ G∆b

is #P-hard.
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The independence polynomial on C

NOTE ON THE ZERO-FREE REGION OF THE HARD-CORE MODEL 3

Figure 1. Zero-free regions for the independence polynomial of graphs
of maximal degree at most � = 10. The green domain is Shearer’s disk,
the brown berry-shape domain is DPR and the red one is our new domain.
The blue curve is the boundary of U9.

2. Preliminaries

Our proof of Theorem 1.4 is inspired by the proof of Theorem 1.3, but we simplify
some arguments and add some extra ideas. One of the simplifications is based on the
observation that it is enough to prove Theorem 1.4 for trees as the following lemma
shows.

Lemma 2.1 (F. Bencs [2]). For every graph G with maximum degree at most � there
exists a tree TG with maximum degree at most � such that ZG(�) divides ZTG

(�) as a
polynomial.

There are many choices for the tree TG in Lemma 2.1. This lemma is implicit in the
work of D. Weitz [9] and in the work of A. D. Scott and A. D. Sokal [6], but the above
algebraic formulation is due to F. Bencs [2].

Given a tree T with maximum degree � � 2 let us pick one of its leaf as a root vertex
v. Then every vertex has at most � � 1 children. If T 0 is a subtree of T then we can
choose a root vertex of T 0 in a natural way: the vertex v0 closest to v. Following H.
Peters and G. Regts [5] for a fixed � let us introduce the quantity

RG,v =
�ZG\N [v](�)

ZT�v(�)
.

Note that for an arbitrary graph G and vertex v we have

ZG(�) = ZG�v(�) + �ZG�N [v](�),

where N [v] = N(v)[ {v}, the closed neighborhood of v. Hence ZG(�) 6= 0 if and only if
RG,v 6= �1. Now if T 0 is a tree with root vertex v0, and u1, . . . , uk are the neighbours of
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The independence polynomial on C

Z∆ :={λ ∈ C | Z (G ; λ) = 0 for some G ∈ G∆}
P∆ :={λ ∈ Q[i ] | approximating |Z (G ; λ)| is #P-hard on G∆}

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)

Let ∆ ≥ 3. The closure of Z∆ is contained in the closure of P∆.

Viresh Patel and Guus Regts 6 / 20



The independence polynomial on C

Z∆ :={λ ∈ C | Z (G ; λ) = 0 for some G ∈ G∆}
P∆ :={λ ∈ Q[i ] | approximating |Z (G ; λ)| is #P-hard on G∆}

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+)

Let ∆ ≥ 3. The closure of Z∆ is contained in the closure of P∆.

Viresh Patel and Guus Regts 6 / 20



State of the art for the independence polynomial as
∆→ ∞

LIMIT OF THE ZERO LOCUS OF THE INDEPENDENCE POLYNOMIAL 3

Figure 1. The cardioid C1, with known zero-free regions depicted in yellow and green,
and the curve � depicted in red. The gray strip near the boundary of the cardioid is
known not to be zero-free anywhere, i.e. it does not intersect U1. The algorithm used
to compute the gray region relies upon Lemma 3.7.

1.1. Known subsets of Ud. There is an extensive history of estimates on the zero-free regions for the
independence polynomial for di↵erent classes of graphs. We discuss some of the most relevant results
here, focusing only on the class of graphs Gd and the region Ud.

Theorem 1.4 ([She85, SS05]). For any d � 2 the disk centered at 0 with radius dd/(d + 1)(d+1) is
contained in Ud.

Since zeros accumulate on the point �dd/(d+1)(d+1), the radius of this so-called Shearer disk is sharp.

Theorem 1.5 ([BC18]). For any d � 2 the semi-disk given by the intersection of the disk of radius
7
8 tan

�
⇡
2d

�
centered at 0 with the right half plane is contained in Ud.

Due to Theorem 1.1 we immediately obtain the following:

Corollary 1.6. The Shearer disk De�1(0) and the semi-disk D7⇡/16(0) \ {Z : Re(Z) > 0} are contained
in U1.

Since U1 is contained in C1, the radius of the Shearer disk De�1(0) is sharp.
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Overview of the rest of the lectures

Ingredients for ‘zeros implies hardness’ for the independence polynomial on
C.

Why is approximating as hard as exact computing?

What do the complex zeros have to do with this?
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Precise formulation of the problem

Let λ ∈ Q[i ] and ∆ ≥ 4.

Name #Hardcorenorm(λ, ∆).

Instance A graph G ∈ G∆.

Output If ZG (λ) = 0 the algorithm may output any rational number;
otherwise the algorithm must output a rational number N such that

1
1.001 ≤ |ZG (λ)|/N ≤ 1.001.

We will show that for certain λ’s, having acces to an algorithm that solves
#Hardcorenorm(λ, ∆) in polynomial time, we can compute ZG (λ) exactly
in time polynomial in |V (G )| for graphs G ∈ G3.
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Reducing approximate counting to exact counting: ratios I

Let µ ∈ Q[i ] and H ∈ G3. We want to compute ZH(µ) exactly.

Lemma

Suppose we have acces to an algorithm that on input of a graph G ∈ G3
outputs numbers r ∈ Q[i ] and b ∈ {0, 1} in time polynomial in |V (G )|
such that

if ZG\N [v ](µ) 6= 0, then b = 1 and r = ZG (µ)
ZG\N [v ](µ)

if ZG\N [v ](µ) = 0 and ZG−v (µ) 6= 0, then b = 0 and r = ZG (µ)
ZG−v (µ)

.

Then ZG (µ) can be computed in time polynomial in |V (G )|.
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Reducing approximate counting to exact counting: ratios I
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Reducing approximate counting to exact counting: ratios II

Let (G , v) be a rooted graph. The ratio RG ,v is the rational function

λ 7→ Z v in
G (λ)

Z v out
G (λ)

=
λZG\N [v ](λ)

ZG−v (λ)
.

We have

ZG (λ)

ZG\N [v ](λ)
=

λZG\N [v ](λ) + ZG−v (λ)

ZG\N [v ](λ)
= λ

(
1 +

1

RG ,v

)

ZG (λ)

ZG−v (λ)
=

λZG\N [v ](λ) + ZG−v (λ)

ZG−v (λ)
= RG ,v + 1

It thus suffices to be able to compute RG ,v in the previous lemma.
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An assumption on µ

(Assumption)

Let ∆ ≥ 4. Assume that µ is such that on input of any y ∈ Q[i ] and
ε ∈ (0, 1) we can compute in time poly(log(1/ε) + size(y)) a rooted tree
(T , u) ∈ G∆ such that degT (u) = 1 and

|RT ,u(µ)− y | ≤ ε,

|T | = poly(log(1/ε) + size(y)),

ZT−u(µ) 6= 0.

Given (G , v) ∈ G3 and (T , u) as above make a new graph G (T ) ∈ G∆ by
identifying u with v . Then

ZG (T )(µ) ∼= ZT−u(µ)
(
ZG−v (µ) + yZG\N [v ](µ)

)
.
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Reducing exact counting approximate counting: binary
search I

ZG (T )(µ) ∼= ZT−u(µ)
(
ZG−v (µ) + yZG\N [v ](µ)

)
.

Write A = ZG\N [v ](µ) and B = ZG−v (µ). Define f (y) = Ay + B. Note
that provided A 6= 0,

f (y) = 0 iff y = −B/A.

Using an algorithm for #Hardcorenorm(µ, ∆) we can compute an
η-approximation f̂ (y) to |f (y)| (recall η = 1.001)
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Intermezzo on rational numbers

Let λ = x + iy ∈ Q[i ] be fixed. Let G = (V ,E ) be an n-vertex graph.
Then

|ZG (λ)| ≤ 2O(n),

the bit size of the number ZG (λ) is O(n),

if ZG (λ) 6= 0, then |ZG (λ)| > 2−O(n).
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Reducing exact counting approximate counting: binary
search II

Assume A 6= 0. Denote y ∗ = −B/A. Note that since µ ∈ Q[i ] we must
have that y ∗ is contained in some square box S of diameter
D = 2O(|V (G )|) with center m.

Let y1 = m− 4ηD y2 = m+ 4ηD. Then

f̂ (y1)− f̂ (y2) ≥ |A| (|y1 − y ∗| − |y2 − y ∗| − 2ηD)

Suppose now that f̂ (y1) ≤ f̂ (y2). Then y ∗ cannot be contained in the
cone of 120◦ centered at y2 pointing towards y1.
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Box shrinking

After O(|V (G )|) many steps the initial box S shrinks down to a box S ′ of
diameter

D ′ = (7/8)O(|V (G )|)D = 2−O(|V (G )|).

If A 6= 0, then for any y ∈ S ′ \ {y ∗}, f̂ (y) ≤ (1 + η)|A|D ′.
If A = 0 and B 6= 0, then for any y ∈ S ′, f̂ (y) ≥ (1 + η)|B |.

Since |B | = Ω(2−|V (G )|) and |A| = O(2|V (G )|), we can thus determine if
A 6= 0 or not by computing f̂ (y) for two values y ∈ S ′.

If A 6= 0 (and thus y ∗ is contained in the initial box),
we can determine y ∗ exactly (being the unique complex number with
rational coordinates whose denominators are bounded by 2O(|V (G )|).)
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Conclusion

Since ε = 2−O(|V (G )|), having an poly-time algorithm for
#Hardcorenorm(µ, ∆), the box shrinking procedure gives us a polynomial
time algorithm to detect whether A = 0 or not and compute
1/y ∗ = −A/B provided not both A and B are equal to 0.

(Summary)

Use ‘box shrinking’ to compute ratios RG ,v exactly.

Use ratios to compute ZH(µ) exactly with telescoping product.

Be careful when and where to ‘trust’ the algorithm.
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Thank you for your attention!
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