Partition Functions: Zeros and efficient approximation III

Viresh Patel and Guus Regts

Summerschool on Algorithms, Dynamics, and Information Flow in Networks, Dortmund

June 27-July 1, 2022

In the previous two lectures: Absence of zeros for partition functions \Rightarrow efficient approximation algorithms.

★ ∃ ► < ∃ ►</p>

In the previous two lectures: Absence of zeros for partition functions \Rightarrow efficient approximation algorithms.

This and the next lecture: What about presence of zeros?

The matching polynomial

The matching polynomial of a graph G = (V, E) is defined as

$$M_G(z) = \sum_{k\geq 0} m_k z^k$$

 m_k denotes the number of matchings with k edges.

The matching polynomial

The matching polynomial of a graph G = (V, E) is defined as

$$M_G(z) = \sum_{k\geq 0} m_k z^k$$

 m_k denotes the number of matchings with k edges.

Theorem (Heilmann and Lieb, 1972)

Let $\Delta \geq 3$. Then for any graph $G \in \mathcal{G}_{\Delta}$, and any $z \notin (-\infty, -\frac{1}{4(\Delta-1)})$, $M_G(z) \neq 0$ and this is tight.

The matching polynomial

The matching polynomial of a graph G = (V, E) is defined as

$$M_G(z) = \sum_{k\geq 0} m_k z^k$$

 m_k denotes the number of matchings with k edges.

Theorem (Heilmann and Lieb, 1972)

Let $\Delta \geq 3$. Then for any graph $G \in \mathcal{G}_{\Delta}$, and any $z \notin (-\infty, -\frac{1}{4(\Delta-1)})$, $M_G(z) \neq 0$ and this is tight.

Theorem (Bezáková, Galanis, Goldberg Štefankovič, 2021) Let $\Delta \ge 3$ and let $z < -\frac{1}{4(\Delta-1)}$ be rational. Approximating the absolute value of $M_G(z)$ for $G \in \mathcal{G}_{\Delta}$ is #P-hard.

< ロ > < 同 > < 回 > < 回 > < 回 >

The partition function of the ferromagnetic Ising model

The partition function of the ferromagnetic Ising model of a graph G = (V, E) is defined as

$$Z_G(\lambda, b) = \sum_{S \subseteq V} \lambda^{|S|} b^{e(S, V \setminus S)}$$

 $e(S, V \setminus S)$ denotes the number of edges across the cut defined by S.

The partition function of the ferromagnetic Ising model

The partition function of the ferromagnetic Ising model of a graph G = (V, E) is defined as

$$Z_{G}(\lambda, b) = \sum_{S \subseteq V} \lambda^{|S|} b^{e(S, V \setminus S)}$$

 $e(S, V \setminus S)$ denotes the number of edges across the cut defined by S.

Theorem (Peters, R., 2020)

Let $b \in (0, 1)$. Then there exists $\Delta_b > 0$ such that the roots $Z_G(\lambda, b)$ as a polynomial in λ as G ranges over \mathcal{G}_{Δ_b} are dense in the unit circle.

The partition function of the ferromagnetic Ising model

The partition function of the ferromagnetic Ising model of a graph G = (V, E) is defined as

$$Z_{G}(\lambda, b) = \sum_{S \subseteq V} \lambda^{|S|} b^{e(S, V \setminus S)}$$

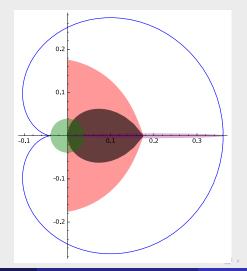
 $e(S, V \setminus S)$ denotes the number of edges across the cut defined by S.

Theorem (Peters, R., 2020)

Let $b \in (0, 1)$. Then there exists $\Delta_b > 0$ such that the roots $Z_G(\lambda, b)$ as a polynomial in λ as G ranges over \mathcal{G}_{Δ_b} are dense in the unit circle.

Theorem (Buys, Galanis, Patel, R., 2022) Let $b \in (0,1) \cap \mathbb{Q}$. Let $\lambda \in \mathbb{Q}[i] \setminus \mathbb{R}$ such that $|\lambda| = 1$. Approximating the absolute value of $Z_G(\lambda, b)$ for $G \in \mathcal{G}_{\Delta_b}$ is #P-hard.

The independence polynomial on $\mathbb C$



3.5 3

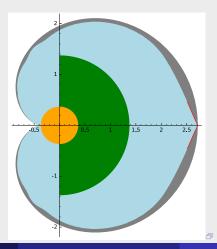
$$\begin{aligned} \mathcal{Z}_{\Delta} := & \{\lambda \in \mathbb{C} \mid Z(G; \lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta} \} \\ \mathcal{P}_{\Delta} := & \{\lambda \in \mathbb{Q}[i] \mid \text{ approximating } |Z(G; \lambda)| \text{ is } \#\text{P-hard on } \mathcal{G}_{\Delta} \} \end{aligned}$$

$$\begin{split} \mathcal{Z}_{\Delta} := & \{\lambda \in \mathbb{C} \mid Z(G; \lambda) = 0 \text{ for some } G \in \mathcal{G}_{\Delta} \} \\ \mathcal{P}_{\Delta} := & \{\lambda \in \mathbb{Q}[i] \mid \text{ approximating } |Z(G; \lambda)| \text{ is } \# \text{P-hard on } \mathcal{G}_{\Delta} \} \end{split}$$

Theorem (de Boer, Buys, Guerini, Peters, R. 2021+) Let $\Delta \geq 3$. The closure of \mathcal{Z}_{Δ} is contained in the closure of \mathcal{P}_{Δ} .

イロト 人間 ト イヨト イヨト

State of the art for the independence polynomial as $\Delta \rightarrow \infty$



Ingredients for 'zeros implies hardness' for the independence polynomial on $\mathbb{C}.$

- Why is approximating as hard as exact computing?
- What do the complex zeros have to do with this?

Let $\lambda \in \mathbb{Q}[i]$ and $\Delta \geq 4$.

Name #Hardcorenorm (λ, Δ) . Instance A graph $G \in \mathcal{G}_{\Delta}$. Output If $Z_G(\lambda) = 0$ the algorithm may output any rational number; otherwise the algorithm must output a rational number N such that

 $\frac{1}{1.001} \le |Z_G(\lambda)| / N \le 1.001.$

Let $\lambda \in \mathbb{Q}[i]$ and $\Delta \geq 4$.

Name #Hardcorenorm (λ, Δ) . Instance A graph $G \in \mathcal{G}_{\Delta}$. Output If $Z_G(\lambda) = 0$ the algorithm may output any rational number; otherwise the algorithm must output a rational number N such that

 $\frac{1}{1.001} \le |Z_G(\lambda)| / N \le 1.001.$

We will show that for certain λ 's, having acces to an algorithm that solves #Hardcorenorm (λ, Δ) in polynomial time, we can compute $Z_G(\lambda)$ exactly in time polynomial in |V(G)| for graphs $G \in \mathcal{G}_3$.

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへぐ

Lemma

Suppose we have acces to an algorithm that on input of a graph $G \in \mathcal{G}_3$ outputs numbers $r \in \mathbb{Q}[i]$ and $b \in \{0, 1\}$ in time polynomial in |V(G)| such that

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma

Suppose we have acces to an algorithm that on input of a graph $G \in \mathcal{G}_3$ outputs numbers $r \in \mathbb{Q}[i]$ and $b \in \{0, 1\}$ in time polynomial in |V(G)| such that

• if
$$Z_{G \setminus N[v]}(\mu) \neq 0$$
, then $b = 1$ and $r = \frac{Z_G(\mu)}{Z_{G \setminus N[v]}(\mu)}$

- 4 目 ト - 4 日 ト

Lemma

Suppose we have acces to an algorithm that on input of a graph $G \in \mathcal{G}_3$ outputs numbers $r \in \mathbb{Q}[i]$ and $b \in \{0, 1\}$ in time polynomial in |V(G)| such that

• if
$$Z_{G \setminus N[v]}(\mu) \neq 0$$
, then $b = 1$ and $r = \frac{Z_G(\mu)}{Z_{G \setminus N[v]}(\mu)}$

• if
$$Z_{G \setminus N[v]}(\mu) = 0$$
 and $Z_{G-v}(\mu) \neq 0$, then $b = 0$ and $r = \frac{Z_G(\mu)}{Z_{G-v}(\mu)}$

Then $Z_G(\mu)$ can be computed in time polynomial in |V(G)|.

(日)

(日)

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{\mathcal{G}}^{\nu \text{ in}}(\lambda)}{Z_{\mathcal{G}}^{\nu \text{ out}}(\lambda)} = \frac{\lambda Z_{\mathcal{G} \setminus \mathcal{N}[\nu]}(\lambda)}{Z_{\mathcal{G} - \nu}(\lambda)}.$$

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{G}^{\nu \text{ in}}(\lambda)}{Z_{G}^{\nu \text{ out}}(\lambda)} = \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G - \nu}(\lambda)}.$$

We have

$$\frac{Z_G(\lambda)}{Z_{G\setminus N[v]}(\lambda)}$$

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{G}^{\nu \text{ in}}(\lambda)}{Z_{G}^{\nu \text{ out}}(\lambda)} = \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G - \nu}(\lambda)}.$$

We have

$$\frac{Z_{G}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{G}^{\nu \text{ in}}(\lambda)}{Z_{G}^{\nu \text{ out}}(\lambda)} = \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G - \nu}(\lambda)}.$$

We have

$$\frac{Z_{G}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \lambda \left(1 + \frac{1}{R_{G,\nu}}\right)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{G}^{\nu \operatorname{in}}(\lambda)}{Z_{G}^{\nu \operatorname{out}}(\lambda)} = \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G - \nu}(\lambda)}.$$

We have

$$\frac{Z_G(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \lambda \left(1 + \frac{1}{R_{G,\nu}}\right)$$
$$\frac{Z_G(\lambda)}{Z_{G-\nu}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G-\nu}(\lambda)} = R_{G,\nu} + 1$$

- 4 回 ト 4 三 ト

Let (G, v) be a rooted graph. The ratio $R_{G,v}$ is the rational function

$$\lambda \mapsto \frac{Z_{G}^{\nu \operatorname{in}}(\lambda)}{Z_{G}^{\nu \operatorname{out}}(\lambda)} = \frac{\lambda Z_{G \setminus N[\nu]}(\lambda)}{Z_{G - \nu}(\lambda)}.$$

We have

$$\frac{Z_G(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G\setminus N[\nu]}(\lambda)} = \lambda \left(1 + \frac{1}{R_{G,\nu}}\right)$$
$$\frac{Z_G(\lambda)}{Z_{G-\nu}(\lambda)} = \frac{\lambda Z_{G\setminus N[\nu]}(\lambda) + Z_{G-\nu}(\lambda)}{Z_{G-\nu}(\lambda)} = R_{G,\nu} + 1$$

It thus suffices to be able to compute $R_{G,v}$ in the previous lemma.

Viresh Patel and Guus Regts

・ロト ・四ト ・ヨト ・ヨト

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_T(u) = 1$ and

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $poly(log(1/\varepsilon) + size(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $deg_T(u) = 1$ and

•
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_T(u) = 1$ and

•
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$

•
$$|T| = poly(log(1/\varepsilon) + size(y)),$$

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_T(u) = 1$ and

•
$$|R_{T,u}(\mu) - y| \leq \varepsilon$$
,

•
$$|T| = poly(log(1/\varepsilon) + size(y))$$
,

•
$$Z_{T-u}(\mu) \neq 0.$$

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_{T}(u) = 1$ and • $|R_{T,u}(\mu) - y| \leq \varepsilon$, • $|T| = \operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$, • $Z_{T-u}(\mu) \neq 0$.

Given $(G, v) \in \mathcal{G}_3$ and (T, u) as above make a new graph $G(T) \in \mathcal{G}_\Delta$ by identifying u with v.

Let $\Delta \geq 4$. Assume that μ is such that on input of any $y \in \mathbb{Q}[i]$ and $\varepsilon \in (0, 1)$ we can compute in time $\operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$ a rooted tree $(T, u) \in \mathcal{G}_{\Delta}$ such that $\deg_{T}(u) = 1$ and • $|R_{T,u}(\mu) - y| \leq \varepsilon$, • $|T| = \operatorname{poly}(\log(1/\varepsilon) + \operatorname{size}(y))$, • $Z_{T-u}(\mu) \neq 0$.

Given $(G, v) \in \mathcal{G}_3$ and (T, u) as above make a new graph $G(T) \in \mathcal{G}_\Delta$ by identifying u with v. Then

$$Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$$

< 日 > < 同 > < 回 > < 回 > .

Reducing exact counting approximate counting: binary search I

 $Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$

Reducing exact counting approximate counting: binary search I

$$Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$$

Write $A = Z_{G \setminus N[v]}(\mu)$ and $B = Z_{G-v}(\mu)$. Define f(y) = Ay + B.

イロト 不得 トイヨト イヨト

$$Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$$

Write $A = Z_{G \setminus N[v]}(\mu)$ and $B = Z_{G-v}(\mu)$. Define f(y) = Ay + B. Note that provided $A \neq 0$,

$$f(y) = 0$$
 iff $y = -B/A$.

$$Z_{G(T)}(\mu) \cong Z_{T-u}(\mu) \left(Z_{G-v}(\mu) + \frac{y}{Z_{G\setminus N[v]}}(\mu) \right).$$

Write $A = Z_{G \setminus N[v]}(\mu)$ and $B = Z_{G-v}(\mu)$. Define f(y) = Ay + B. Note that provided $A \neq 0$,

$$f(y) = 0$$
 iff $y = -B/A$.

Using an algorithm for #Hardcorenorm(μ , Δ) we can compute an η -approximation $\hat{f}(y)$ to |f(y)| (recall $\eta = 1.001$)

イロト イヨト イヨト ・

Let $\lambda = x + iy \in \mathbb{Q}[i]$ be fixed. Let G = (V, E) be an *n*-vertex graph. Then

- $|Z_G(\lambda)| \le 2^{O(n)}$,
- the bit size of the number $Z_G(\lambda)$ is O(n),
- if $Z_G(\lambda) \neq 0$, then $|Z_G(\lambda)| > 2^{-O(n)}$.

Assume $A \neq 0$. Denote $y^* = -B/A$. Note that since $\mu \in \mathbb{Q}[i]$ we must have that y^* is contained in some square box S of diameter $D = 2^{O(|V(G)|)}$ with center m.

Assume $A \neq 0$. Denote $y^* = -B/A$. Note that since $\mu \in \mathbb{Q}[i]$ we must have that y^* is contained in some square box S of diameter $D = 2^{O(|V(G)|)}$ with center m.

Let
$$y_1 = m - 4\eta D$$
 $y_2 = m + 4\eta D$. Then
 $\hat{f}(y_1) - \hat{f}(y_2) \ge |A| (|y_1 - y^*| - |y_2 - y^*| - 2\eta D)$

Assume $A \neq 0$. Denote $y^* = -B/A$. Note that since $\mu \in \mathbb{Q}[i]$ we must have that y^* is contained in some square box S of diameter $D = 2^{O(|V(G)|)}$ with center m.

Let
$$y_1 = m - 4\eta D$$
 $y_2 = m + 4\eta D$. Then
 $\hat{f}(y_1) - \hat{f}(y_2) \ge |A| (|y_1 - y^*| - |y_2 - y^*| - 2\eta D)$

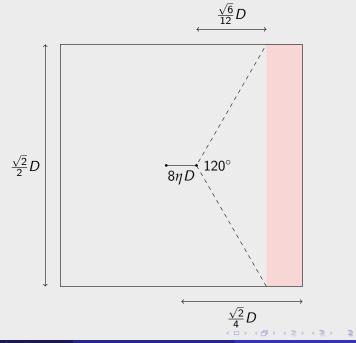
Suppose now that $\hat{f}(y_1) \leq \hat{f}(y_2)$. Then

Assume $A \neq 0$. Denote $y^* = -B/A$. Note that since $\mu \in \mathbb{Q}[i]$ we must have that y^* is contained in some square box S of diameter $D = 2^{O(|V(G)|)}$ with center m.

Let
$$y_1 = m - 4\eta D$$
 $y_2 = m + 4\eta D$. Then
 $\hat{f}(y_1) - \hat{f}(y_2) \ge |A| (|y_1 - y^*| - |y_2 - y^*| - 2\eta D)$

Suppose now that $\hat{f}(y_1) \leq \hat{f}(y_2)$. Then y^* cannot be contained in the cone of 120° centered at y_2 pointing towards y_1 .

ヘロト 人間 とくほ とくほ とう



$$D' = (7/8)^{O(|V(G)|)} D = 2^{-O(|V(G)|)}.$$

$$D' = (7/8)^{O(|V(G)|)} D = 2^{-O(|V(G)|)}.$$

• If $A \neq 0$, then for any $y \in S' \setminus \{y^*\}$, $\hat{f}(y) \leq (1+\eta)|A|D'$.

A 回 > < E > < E >

$$D' = (7/8)^{O(|V(G)|)} D = 2^{-O(|V(G)|)}.$$

• If $A \neq 0$, then for any $y \in S' \setminus \{y^*\}$, $\hat{f}(y) \leq (1+\eta)|A|D'$. • If A = 0 and $B \neq 0$, then for any $y \in S'$, $\hat{f}(y) \geq (1+\eta)|B|$.

$$D' = (7/8)^{O(|V(G)|)} D = 2^{-O(|V(G)|)}.$$

If A ≠ 0, then for any y ∈ S' \ {y*}, f(y) ≤ (1+η)|A|D'.
If A = 0 and B ≠ 0, then for any y ∈ S', f(y) ≥ (1+η)|B|.
Since |B| = Ω(2^{-|V(G)|}) and |A| = O(2^{|V(G)|}), we can thus determine if A ≠ 0 or not by computing f(y) for two values y ∈ S'.

$$D' = (7/8)^{O(|V(G)|)} D = 2^{-O(|V(G)|)}.$$

• If $A \neq 0$, then for any $y \in S' \setminus \{y^*\}$, $\hat{f}(y) \leq (1+\eta)|A|D'$.

• If A = 0 and $B \neq 0$, then for any $y \in S'$, $\hat{f}(y) \ge (1 + \eta)|B|$. Since $|B| = \Omega(2^{-|V(G)|})$ and $|A| = O(2^{|V(G)|})$, we can thus determine if $A \neq 0$ or not by computing $\hat{f}(y)$ for two values $y \in S'$.

 If A ≠ 0 (and thus y* is contained in the initial box), we can determine y* exactly (being the unique complex number with rational coordinates whose denominators are bounded by 2^{O(|V(G)|)}.)

ヘロマ 人間マ 人間マー

Since $\varepsilon = 2^{-O(|V(G)|)}$, having an poly-time algorithm for #Hardcorenorm(μ , Δ), the box shrinking procedure gives us a polynomial time algorithm to detect whether A = 0 or not and compute $1/y^* = -A/B$ provided not both A and B are equal to 0.

イロト 不得 ト イヨト イヨト

Since $\varepsilon = 2^{-O(|V(G)|)}$, having an poly-time algorithm for #Hardcorenorm(μ , Δ), the box shrinking procedure gives us a polynomial time algorithm to detect whether A = 0 or not and compute $1/y^* = -A/B$ provided not both A and B are equal to 0.

(Summary)

- Use 'box shrinking' to compute ratios $R_{G,v}$ exactly.
- Use ratios to compute $Z_H(\mu)$ exactly with telescoping product.
- Be careful when and where to 'trust' the algorithm.

臣

イロト イヨト イヨト イヨト