Partition functions: complex zeros and
algorithms

Part 1

Viresh Patel and Guus Regts

Summer school on algorithms, dynamics, and information
flow in networks

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper g-colourings of a graph?

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper g-colourings of a graph?
1 Yes - matrix tree theorem

2,3 Problems are computationally hard (on bounded degree
graphs)

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper g-colourings of a graph?
1 Yes - matrix tree theorem

2,3 Problems are computationally hard (on bounded degree
graphs)

Is there an efficient algorithm to approximately count
@ independent sets of a graph?
@ proper g-colourings of a graph?

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper g-colourings of a graph?
1 Yes - matrix tree theorem

2,3 Problems are computationally hard (on bounded degree
graphs)

Is there an efficient algorithm to approximately count
@ independent sets of a graph?
@ proper g-colourings of a graph?

Breakdown
@ Part I, Il - Efficient approximation algorithms
@ Part lll, IV - Hardness

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper g-colourings of a graph?
1 Yes - matrix tree theorem

2,3 Problems are computationally hard (on bounded degree
graphs)

Is there an efficient algorithm to approximately count
@ independent sets of a graph?
@ proper g-colourings of a graph?

Breakdown
@ Part I, Il - Efficient approximation algorithms
@ Part lll, IV - Hardness

Connection to statistical physics

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Hard-core model

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Hard-core model
@)\ is a temperature parameter
@ For S C V independent, we have P(S) o \I°!

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Hard-core model
@)\ is a temperature parameter
@ For S C V independent, we have P(S) o \I°!
@ P(S) = \ISl/Z5()\) where

ZsMN =, A

SCV independent

Example: Hard-core model

Graph G= (V,E)
S C Visanindependent setif Vu,v € S, uv ¢ E.

Hard-core model
@)\ is a temperature parameter
@ For S C V independent, we have P(S) o \I°!
@ P(S) = \ISl/Z5()\) where

ZeW)= Y, AF

SCV independent

is the partition function of the hard-core model (a.k.a the
independence polynomial)

G = (V,E)agraph

Independence polynomial

Zg(\) = > A= "aak,

SCV independent k>0

where a, = # of independent sets of size k (in G).

G = (V,E)agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G
@ Z,(1)/Zs(1) = average size of independent set

G = (V,E) agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G
@ Z,(1)/Zs(1) = average size of independent set

@ Zs()) for large X determines size of largest independent
set

G = (V,E) agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G

@ Z(1)/Zs(1) = average size of independent set

@ Zs()) for large X determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate Zg(\)
at different \?

G=(V,E)agraph @ | T7¢A + 27

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G

@ Z,(1)/Zs(1) = average size of independent set

@ Zs()) for large X determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate Zg(\)
at different \?

Examples

Z@, VG, (/\) - ZG, (&) Z@ 2(%)

st 15|
Z)’ﬂ = 5 A)

‘ o(5(‘uﬁd'l'wé'”
%"lMG(UG'L S) IWJ u/lA]/

Is, | \IS,,/
= Z N2

10l 1 VNPT
s 110l ji .

o (/47\)’1

Graph polynomials / partition functions

We will look at
@ Independence polynomial (hard-core model)
@ Matching polynomial (monomer-dimer model)
@ Chromatic polynomial
@ Partition function of Ising model

Graph polynomials / partition functions

We will look at
@ Independence polynomial (hard-core model)
@ Matching polynomial (monomer-dimer model)
@ Chromatic polynomial
@ Partition function of Ising model

Perspectives
@ Enumeration - generating functions for counting objects in
graphs
@ Statistical physics - partition functions

Graph polynomials / partition functions

We will look at
@ Independence polynomial (hard-core model)
@ Matching polynomial (monomer-dimer model)
@ Chromatic polynomial
@ Partition function of Ising model

Perspectives
@ Enumeration - generating functions for counting objects in
graphs
@ Statistical physics - partition functions

Questions
@ Where are the roots of the graph polynomials?

@ What is the computational complexity of evaluating the
graph polynomials (approximately)?

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f(G) = Z5(1) = # independent sets in G = (V, E)).

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f(G) = Z5(1) = # independent sets in G = (V, E)).

An FPTAS is an algorithm that, given input Gand 0 < e < 1,
@ estimates f(G) within a multiplicative factor 1 + ¢
@ in time polynomial in n = |V| and ¢~ .

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f(G) = Z5(1) = # independent sets in G = (V, E)).

An FPTAS is an algorithm that, given input Gand 0 < e < 1,
@ estimates f(G) within a multiplicative factor 1 + ¢
@ in time polynomial in n = |V| and ¢~ .

An FPRAS is a randomised algorithm that, given input G and
O<ex<,

@ estimates f(G) within a multiplicative factor 1 + ¢
@ in time polynomial in n = |V| and e~
@ with probability > 2.

Independence Polynomial

Let G=(V, E)
Zew = Y Ae

SCV independent

Independence Polynomial

Let G=(V, E)
Zew = Y Ae

SCV independent
A(G) < A

@ 0 <\ <)\ = JFPTAS for Zg(\) (Weitz)

@ \>)¢ — AFPTAS for Zg(\) unless P = NP
5 (Sly and Sun)
(Galanis, Stefankovi¢, Vigoda)
where
(A —1)A1

Ao = Ao(D) = “Bo2p

Three methods for approximate counting

Markov chain Monte Carlo (Broder, Jerrum, Sinclair)
@ randomised algorithms
@ generally faster algorithms

Correlation decay (Weitz)
@ deterministic algorithm

Taylor polynomial interpolation (Barvinok)
@ deterministic
@ complex evaluations

Taylor Polynomial Interpolation Method (Barvinok)
@ Let p = pg be a (graph) polynomial of degree < n.
@ Assume p(z) # 0 for all |z| < R for some R > 0. (z € C)
@ Letf(z) =Inp(z) for |z] < R and let

m k
Tn(2) = Y fM(0) 5.

k=0

Taylor Polynomial Interpolation Method (Barvinok)
@ Let p = pg be a (graph) polynomial of degree < n.
@ Assume p(z) # 0 for all |z| < R for some R > 0. (z € C)
@ Letf(z) =Inp(z) for |z] < R and let

m k
Tn(2) = Y fM(0) 5.

k=0

Then for m > CIn(n/e) we have that | Tpy(z2) — f(2)| < e

Taylor Polynomial Interpolation Method (Barvinok)
@ Let p = pg be a (graph) polynomial of degree < n.
@ Assume p(z) # 0 for all |z| < R for some R > 0. (z € C)

@ Letf(z) =Inp(z) for |z] < R and let
m . Zk
Tn(2) = Y f9(0) 7.
k=0
Then for m > ClIn(n/<) we have that | T (2) — f(z)| < e
ie. Tm(z)=f(z)+t with |t| < ¢
— e'm(®) = ¢!ef@ ~ (1 +)p(2).

Taylor Polynomial Interpolation Method (Barvinok)
@ Let p = pg be a (graph) polynomial of degree < n.
@ Assume p(z) # 0 for all |z| < R for some R > 0. (z € C)

@ Letf(z) =Inp(z) for |z] < R and let
m . Zk
Tn(2) = Y f9(0) 7.
k=0
Then for m > ClIn(n/<) we have that | T (2) — f(z)| < e
ie. Tm(z)=f(z)+t with |t| < ¢
— e'm(®) = ¢!ef@ ~ (1 +)p(2).

Recipe for FPTAS
@ |dentify zero-free region of p containing z (inc. non-disks).
@ Efficiently compute f(9)(0) for k = 0,..., O(Inn/e).

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose
pc(z) =ay+ arz+ -+ anz".
Wish to compute f(¥)(0) for k = 1,...,m = In(n/<) where
f(z) = Inpg(2).

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose
pc(z) =ay+ arz+ -+ anz".
Wish to compute f(¥)(0) for k = 1,...,m = In(n/<) where
f(z) = Inpg(2).

Observation

If we can compute ag, . . ., am, then we can compute
f©)(0), f1)(0), ..., M(0)

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose
pc(z) =ay+ arz+ -+ anz".
Wish to compute f(¥)(0) for k = 1,...,m = In(n/<) where
f(z) = Inpg(2).

Observation

If we can compute ag, . . ., am, then we can compute
f©)(0), f1)(0), ..., M(0)

Apper Fricmgulor liseor system)
() — £ / " wlmomayzg {("'(o), 1(({)(0)1-7 {_‘(W)[r/)
P (Z) = P(z) (Z) (o e solveol ia {ewms ct qo’“?aw‘ .

d;huww Klag=>" < . >a,-f(mf>(0) k=1,....m
oviol awoluate =0 J
ok 2er0

Example - independence polynomial

ZG(Z) = Z aka

k>0

where ax = ax(G) = # indep sets of size k in G.

Example - independence polynomial

Zg(Z) = Z aka

k>0

where ax = ax(G) = # indep sets of size k in G.

How do we compute ag, a; ..., am for m= O(Inn/e)?

@ Check all sets of size < m: takes n©(M = pO(nn-Ine) {img,
@ There is a faster way to do this for bounded degree graphs!

Example - independence polynomial

Zg(Z) = Z aka

k>0

where ax = ax(G) = # indep sets of size k in G.

How do we compute ag, a; ..., am for m= O(Inn/e)?

@ Check all sets of size < m: takes n©(M = pO(nn-Ine) {img,
@ There is a faster way to do this for bounded degree graphs!

Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ax(G) = #indep sets of size k in G

in time poly(n)cX, where ¢ = ¢(A) is a constant.

Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ax(G) = #indep sets of size k in G

in time poly(n)cX, where ¢ = ¢(A) is a constant.

Lemma implies the following

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

This holds for more general regions than just the disk.

Lemma (Patel, Regts)

If A(G) < A, we can compute

ax = ak(G) = ind(ok, G) b ;’so(c«:teof
in time ckn®"), where ¢ = ¢(A). vert ces

Write ind(H, G) := # induced copies of Hin G

Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ak(G) = ind(ok, G)

in time ckn®"), where ¢ = c(A).

Write ind(H, G) := # induced copies of Hin G

Three observations

Can compute ind(H, G) in time ckn®") where

|H| = k, H connected and |G| =n, A(G) < A.

N cheicy fer
A cheicy fe x,
g A C'ACI'C'O FU f‘b

Tffavm'. tnee '
n H'3 <A dhoices fer L

Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ak(G) = ind(ok, G)

in time ckn®"), where ¢ = c(A).

Write ind(H, G) := # induced copies of Hin G = (v, E/
Three observations

Can compute ind(H, G) in time ckn®") where
|H| = k, H connected and |G| =n, A(G) < A.
ind(Hy, -)ind(Hz,) = 3 p1<| k| +|H,| CH Ind(H,))

I
[fsicv: Gusd=uay] [£(s<u, 6 052) = K]
- l Z“,JSL) - GES’]: Hi) &(s) < Hb% ’

I
FscV: GLs=H G| £ (5 Ui GLs) - I
| 5(5,,57,)3 Glsi)=dy) @05) ¢ He' ,

— ,ZC%’\WOX(H/“)

@ ! g@”%)? 5)5
_ \/CH/
-

|

Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ak(G) = ind(ok, G)

in time ckn®"), where ¢ = c(A).

Write ind(H, G) := # induced copies of Hin G

Three observations

Can compute ind(H, G) in time ckn®") where

|H| = k, H connected and |G| = n, A(G) < A.

Suppose 7(G) = >_ py ind(H, G)
and T(G1 UGZ):T(G1)+T(GQ) VGy, Go

—> uy = 0 for all disconnected H. (Csikvari and Frenkel)

E Wi convetted tnen
Feo)= mol(H,6) s aclditisg
T(G) - M@) s addifia fer
- on) X
TG = Z LA ind (1, Q) adlol | fee.
1 olisam MQ‘{U}

lecle o swalleh dicometed H*
ter which gl #O

HE Holls
T(HW~ zrd H;m >
= gy wdl (4,
clis H Sincs
+ Z My WlCﬁ [H): i bigger fnen
clic 1 ; U evidd H~
mwol
7 e

T < S dpind () H*) = M ype by minwely
H discen ot H}ﬁ

=) Mg "0, @ conhodichon

Le. here s yo 6%&&5{’ dlﬁCOVl/\Zb"_fJ i Fcf which
s 450 e =0]EOW Gl d/s@m/tzofecv@[#

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(o¥, G)
in time ckn®"), where ¢ = ¢(A).

Proof.

A\ |

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(o¥, G)
in time ckn®("), where ¢ = ¢c(A).

Proof.

Let n1,...,nq be the roots of Zg(2) = > a,2"
Letpi=ny"+---+ 0y

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(oX, G)
in time ckn®"), where ¢ = c¢(A).

| \

Proof.
Let 71,...,nq be the roots of Zg(z) = > a,z" [
s — el Al oo —I)|
Letpi ="+ -+ L{%AHH(3
aopt +aipr1+ -+ apy = —tar vVt >1
Ms‘mg fe.mol)
cos” = pi(G)= > cy-ind(H,G)
|H|<k
PL =~

Po +Q,P = "4
Py f Q[‘Pv‘l’ 01/)! = "Q}

A\

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(oX, G)
in time ckn®"), where ¢ = c¢(A).

Proof.
Let 71,...,nq be the roots of Zg(z) = > a,z"
Letpj=ny'+---+n,'.
aopt +aipr—1+--+a1py = —tar vVt =1
pi(G1 U Gz) = pi(Gy) + pi(Gz)
=p(G) = Y oy indH,G) Using fuird

|H|<k chsecvatior
H connected

| \

A\

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(oX, G)
in time ckn®"), where ¢ = c¢(A).

Proof.
Let 71,...,nq be the roots of Zg(z) = > a,z"
Letpj=ny'+---+n,'.
aopt + a1pr—1 + -+ a1py = —tar Vt > 1
pi(G1 U Gz) = pi(Gy) + pi(Gz)
= p(G) = Y cy-ind(H,G)

|H|<k
H connected

| \

In time ¢¥n®") can compute
@ all non-zero ind(H, G) (for connected H, |H| < k)

A\

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(oX, G)
in time ckn®"), where ¢ = c¢(A).

Proof.
Let 71,...,nq be the roots of Zg(z) = > a,z"
Letpi=n"+---+n5'.
aopt + a1pr—1 + -+ a1py = —tar Vt > 1
pi(G1 U Gz) = pi(Gy) + pi(Gz)
= p(G) = Y cy-ind(H,G)

|H|<k
H connected

| \

In time ¢¥n®") can compute
@ all non-zero ind(H, G) (for connected H, |H| < k)
@ all ¢y for which ind(H, G) non-zero

A\

Lemma (Patel, Regts)

If A(G) < A, we can compute ax = ax(G) = ind(oX, G)
in time ckn®"), where ¢ = c¢(A).

Proof.
Let 71,...,nq be the roots of Zg(z) = > a,z"
Letpi=n"+---+n5'.
aopt + a1pr—1 + -+ a1py = —tar Vt > 1
pi(G1 U Gz) = pi(Gy) + pi(Gz)
= p(G) = Y cy-ind(H,G)

|H|<k
H connected

| \

In time ¢¥n®") can compute
@ all non-zero ind(H, G) (for connected H, |H| < k)
@ all ¢y for which ind(H, G) non-zero
@ py,...,px hence ay, ..., ax n

A\

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

_1\A-1 _1\A-1
A (A) = B Ao(A) = % (Note A* < Ac)

We have Zg(z) # 0 for all z € D and A(G) < A where
(1) D=A{z : |z| < X} (Dobushin, Shearer)
(2) D = open region containing [0, A¢) (Peters, Regts)

(38) D={z:R(2) >0, |z| < Ztan (ﬁ)} (Csikvéri, Bencs)

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

_1\A-1 _1\A-1
A (A) = B Ao(A) = % (Note A* < Ac)

We have Zg(z) # 0 for all z € D and A(G) < A where

(1) D=A{z : |z| < X} (Dobushin, Shearer)
(2) D = open region containing [0, \¢) (Peters, Regts)

(38) D={z:R(2) >0, |z| < Ztan (ﬁ)} (Csikvéri, Bencs)

Implies the following:

There is an FPTAS for computing Zg(z) if z € D and A(G) < A-J

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

_1\A-1 _1\A-1
A (A) = B Ao(A) = % (Note A* < Ac)

We have Zg(z) # 0 for all z € D and A(G) < A where

(1) D=A{z : |z| < X} (Dobushin, Shearer)
(2) D = open region containing [0, \¢) (Peters, Regts)

(38) D={z:R(2) >0, |z| < Ztan (ﬁ)} (Csikvéri, Bencs)

Implies the following:

There is an FPTAS for computing Zg(z) if z € D and A(G) < A-J

@ Recover result of Weitz and more

Zero-free regions for Zg where A(G) < d (d =10)

@ Green region (Shearer, Dobrushin)
@ Brown/purple regions (Peters, Regts)
@ Red region (Csikvari, Bencs)

Explain non-disks

Zeros of Zg and hardness (for A(G) < d)

@ Zeros of Z7, , are dense outside blue curve
(de Boer, Buys, Guerini Peters, Regts)

@ NP-hard to approximate Zg(z) outside blue curve
(Bezakova, Galanis, Goldberg, Stefankovic)

Computing approximation for Zg(z)

Summary

Idea: Approximate f(z) = In(Zg(z)) by In(n) term Taylor approx
1) Need to identify zero-free region
2) Compute f9)(0) in time poly(n)ck

Computing approximation for Zg(z)

Summary

Idea: Approximate f(z) = In(Zg(z)) by In(n) term Taylor approx
1) Need to identify zero-free region
2) Compute f9)(0) in time poly(n)ck

For step 2), note that

@ Compute f(K)(0) +> compute kth inverse power sum py
o
P(G) = > cu-ind(H,G)

[H|<k
H connected

@ “Easy” to compute ind(H, G) when H connected

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.
@ partition function of monomer-dimer model
@ special independence polynomials: Mg(\) = Z(G)(A)

y -
<>c\//z %@

¢ L(@)

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.
@ partition function of monomer-dimer model
@ special independence polynomials: Mg(\) = Z(G)(A)

Theorem (Heilmann, Lieb 1972)
Mg(z) #0 forall G and all z € C \ (—,0)

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.
@ partition function of monomer-dimer model
@ special independence polynomials: Mg(\) = Z(G)(A)

Theorem (Heilmann, Lieb 1972)
Mg(z) #0 forall G and all z € C \ (—,0)

Also MG(Z) = ZL(G)(Z) #0 for ‘Z| <)*(ZA - 1) = @(1/A)

Matching polynomial

Graph G= (V,E).
Call M C E a matching if no edges in M are incident.

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.
@ partition function of monomer-dimer model
@ special independence polynomials: Mg(\) = Z(G)(A)

Theorem (Heilmann, Lieb 1972)
Mg(z) #0 forall G and all z € C \ (—,0)

Also MG(Z) = ZL(G)(Z) #0 for ‘Z| <)*(2A - 1) = @(1/A)
So our method implies

There is an FPTAS to evaluate Mg(z) with A(G) < A and
z e C\ (—o0, —A*(2A — 1)). J

Matching polynomial

Mg()) = > AME=3 " my Ak

matchings M of G k>0

where my = # of matchings of size k in G.

There is an FPTAS to evaluate Mg(z) with A(G) < A and
zeC\ (—o0,—A*(2A - 1)).

Matching polynomial

Mg()) = > AME=3 " my Ak

matchings M of G k>0

where my = # of matchings of size k in G.

There is an FPTAS to evaluate Mg(z) with A(G) < A and
zeC\ (—o0,—A*(2A - 1)). J

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate Mg(\) whenever A(G) < A and
A € [0, 00).

Matching polynomial

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.

There is an FPTAS to evaluate Mg(z) with A(G) < A and
zeC\ (—o0,—A*(2A - 1)). J

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate Mg(\) whenever A(G) < A and
A € [0, 00).

Using MCMC

Theorem (Jerrum, Sinclair)
There is an FPRAS to evaluate Mg(\) for all G and \ € [0,).

General result

[Definiton

Let p = pg be a graph polynomial, i.e.
pa(z) = > a(G)Z¥.
k

iFall p a bounded induced graph counting polynomial (BIGCP)

° pG1UGg = pG1 pG2
® a(G) = X |H—o(k) SH.k - ind(H, G)
@ sy x can be computed in exp(O(k))-time

c.f. independence polynomial

General result

[Definiton

Let p = pg be a graph polynomial, i.e.
pa(z) = > a(G)Z¥.
k

iFall p a bounded induced graph counting polynomial (BIGCP)

° pG1UGg = pG1 pG2
® a(G) = X |H—o(k) SH.k - ind(H, G)
@ sy x can be computed in exp(O(k))-time

c.f. independence polynomial

Theorem (Patel, Regts)

Let p be a BIGCP with pg(z) # 0 for |z] < K = K(A).
3 FPTAS to compute pg(z) for |z| < K and A(G) < A.

Chromatic polynomial

Foragraph G= (V,E)

xg(q) = # proper g-colourings of G;

A vleyie) = X o (i)

Chromatic polynomial

Foragraph G= (V,E)
xg(q) = # proper g-colourings of G;

hence xa,u6,(9) = X6 (9) - X6,(9)

Chromatic polynomial

Foragraph G= (V,E)
xg(q) = # proper g-colourings of G;

hence xg,u6,(9) = xa,(9) - x6,(q) Examples

Random cluster model formulation
xa(q) = D (—1)Ag"" = Za,

ACE

where
@ a,=1
@ a,_1 = (—1)ind(e, G)
@ a, » =ind(Ps, G) —ind(K3, G) + ind(2K>, G) etc

Chromatic polynomial

Foragraph G= (V,E)
xg(q) = # proper g-colourings of G;

hence xg,u6,(9) = xa,(9) - x6,(q) Examples

Random cluster model formulation

xa(q) = D (—1)Ag"" = Za,

ACE

where
@ a,=1
@ a,_1 = (—1)ind(e, G)
@ a, » =ind(Ps, G) —ind(K3, G) + ind(2K>, G) etc

Hence z"xg(z~") is a BIGCP)

Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP)

Theorem (Jackson, Procacci and Sokal)
xG(z) # 0 whenever A(G) < A and |z| > K(A) = 6.91A.

Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP)

Theorem (Jackson, Procacci and Sokal)
xG(z) # 0 whenever A(G) < A and |z| > K(A) = 6.91A.

Using our method, this implies

There is an FPTAS to evaluate xg(z) for graphs of maximum
degree A whenever |z| > K(A) = 6.91A. J

Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP)

Theorem (Jackson, Procacci and Sokal)
xG(z) # 0 whenever A(G) < A and |z| > K(A) = 6.91A.

Using our method, this implies

There is an FPTAS to evaluate xg(z) for graphs of maximum
degree A whenever |z| > K(A) = 6.91A. ’

Many results
@ FPTAS for g > 2A(G) (Liu-Srivastava-Sinclair)

G) (
@ FPRAS for q> 11A(G) (Vigoda)
(—¢)A(G) (CDMPP)

@ No FPTAS for g < A(G) unless P = NP
@ FP(RT)AS conjectured for g > A(G)

Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP |

Conjecture (Sokal)
xg(2) # 0 ifR(z) > A(G).

17

Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP |

Conjecture (Sokal)
xg(2) #0ifR(z) > A(G).

So our method implies

Conjecture (Folklore)
There is an FPTAS for xg(q) whenever q > A(G).

o Netquiteimmediate but-nettoo-hard:requiresseme
confermal-mapping

