
Partition functions: complex zeros and
algorithms

Part 1

Viresh Patel and Guus Regts

Summer school on algorithms, dynamics, and information
flow in networks

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are computationally hard (on bounded degree

graphs)

Is there an efficient algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?

Breakdown
Part I, II - Efficient approximation algorithms
Part III, IV - Hardness

Connection to statistical physics

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are computationally hard (on bounded degree

graphs)

Is there an efficient algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?

Breakdown
Part I, II - Efficient approximation algorithms
Part III, IV - Hardness

Connection to statistical physics

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are computationally hard (on bounded degree

graphs)

Is there an efficient algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?

Breakdown
Part I, II - Efficient approximation algorithms
Part III, IV - Hardness

Connection to statistical physics

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are computationally hard (on bounded degree

graphs)

Is there an efficient algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?

Breakdown
Part I, II - Efficient approximation algorithms
Part III, IV - Hardness

Connection to statistical physics

Introduction

Is there an efficient algorithm to count
1) spanning trees in a graph?
2) independent sets of a graph?
3) proper q-colourings of a graph?

1 Yes - matrix tree theorem
2,3 Problems are computationally hard (on bounded degree

graphs)

Is there an efficient algorithm to approximately count
independent sets of a graph?
proper q-colourings of a graph?

Breakdown
Part I, II - Efficient approximation algorithms
Part III, IV - Hardness

Connection to statistical physics

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model
� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model
� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model

� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model
� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model
� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

Example: Hard-core model

Graph G = (V ,E)

S ✓ V is an independent set if 8u, v 2 S, uv 62 E .

Hard-core model
� is a temperature parameter
For S ✓ V independent, we have P(S) / �|S|

P(S) = �|S|/ZG(�) where

ZG(�) =
X

S✓V independent

�|S|

is the partition function of the hard-core model (a.k.a the
independence polynomial)

G = (V ,E) a graph

Independence polynomial

ZG(�) =
X

S✓V independent

�|S| =
X

k�0

ak�
k ,

where ak = # of independent sets of size k (in G).

ZG(1) = # independent sets in G
Z 0

G(1)/ZG(1) = average size of independent set
ZG(�) for large � determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate ZG(�)
at different �?

Examples

G = (V ,E) a graph

Independence polynomial

ZG(�) =
X

S✓V independent

�|S| =
X

k�0

ak�
k ,

where ak = # of independent sets of size k (in G).

ZG(1) = # independent sets in G
Z 0

G(1)/ZG(1) = average size of independent set

ZG(�) for large � determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate ZG(�)
at different �?

Examples

G = (V ,E) a graph

Independence polynomial

ZG(�) =
X

S✓V independent

�|S| =
X

k�0

ak�
k ,

where ak = # of independent sets of size k (in G).

ZG(1) = # independent sets in G
Z 0

G(1)/ZG(1) = average size of independent set
ZG(�) for large � determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate ZG(�)
at different �?

Examples

G = (V ,E) a graph

Independence polynomial

ZG(�) =
X

S✓V independent

�|S| =
X

k�0

ak�
k ,

where ak = # of independent sets of size k (in G).

ZG(1) = # independent sets in G
Z 0

G(1)/ZG(1) = average size of independent set
ZG(�) for large � determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate ZG(�)
at different �?

Examples

G = (V ,E) a graph

Independence polynomial

ZG(�) =
X

S✓V independent

�|S| =
X

k�0

ak�
k ,

where ak = # of independent sets of size k (in G).

ZG(1) = # independent sets in G
Z 0

G(1)/ZG(1) = average size of independent set
ZG(�) for large � determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate ZG(�)
at different �?

Examples

0%7 1+4×+2-1

ZGua.lt/--2qiY2G-ziY
"

[× 's / = [×
" "

. >
"4

Sind finding ,
in GNGZ binding ,

= Ex
's" Ex

's-1

siindinhy ¥

°-[~ 111-7112

Graph polynomials / partition functions

We will look at
Independence polynomial (hard-core model)
Matching polynomial (monomer-dimer model)
Chromatic polynomial
Partition function of Ising model

Perspectives
Enumeration - generating functions for counting objects in
graphs
Statistical physics - partition functions

Questions
Where are the roots of the graph polynomials?
What is the computational complexity of evaluating the
graph polynomials (approximately)?

Graph polynomials / partition functions

We will look at
Independence polynomial (hard-core model)
Matching polynomial (monomer-dimer model)
Chromatic polynomial
Partition function of Ising model

Perspectives
Enumeration - generating functions for counting objects in
graphs
Statistical physics - partition functions

Questions
Where are the roots of the graph polynomials?
What is the computational complexity of evaluating the
graph polynomials (approximately)?

Graph polynomials / partition functions

We will look at
Independence polynomial (hard-core model)
Matching polynomial (monomer-dimer model)
Chromatic polynomial
Partition function of Ising model

Perspectives
Enumeration - generating functions for counting objects in
graphs
Statistical physics - partition functions

Questions
Where are the roots of the graph polynomials?
What is the computational complexity of evaluating the
graph polynomials (approximately)?

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f (G) = ZG(1) = # independent sets in G = (V ,E)).

An FPTAS is an algorithm that, given input G and 0 < " < 1,
estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1.

An FPRAS is a randomised algorithm that, given input G and
0 < " < 1,

estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1

with probability � 3
4 .

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f (G) = ZG(1) = # independent sets in G = (V ,E)).

An FPTAS is an algorithm that, given input G and 0 < " < 1,
estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1.

An FPRAS is a randomised algorithm that, given input G and
0 < " < 1,

estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1

with probability � 3
4 .

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f (G) = ZG(1) = # independent sets in G = (V ,E)).

An FPTAS is an algorithm that, given input G and 0 < " < 1,
estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1.

An FPRAS is a randomised algorithm that, given input G and
0 < " < 1,

estimates f (G) within a multiplicative factor 1 ± "

in time polynomial in n = |V | and "�1

with probability � 3
4 .

Independence Polynomial

Let G = (V ,E)

ZG(�) =
X

S✓V independent

�|S|

�(G)  �

0  � < �c =) 9 FPTAS for ZG(�) (Weitz)
� > �c =) 6 9 FPTAS for ZG(�) unless P = NP

(Sly and Sun)
(Galanis, Štefankovič, Vigoda)

where

�c = �c(�) :=
(�� 1)��1

(�� 2)�
.

Independence Polynomial

Let G = (V ,E)

ZG(�) =
X

S✓V independent

�|S|

�(G)  �

0  � < �c =) 9 FPTAS for ZG(�) (Weitz)
� > �c =) 6 9 FPTAS for ZG(�) unless P = NP

(Sly and Sun)
(Galanis, Štefankovič, Vigoda)

where

�c = �c(�) :=
(�� 1)��1

(�� 2)�
.

Three methods for approximate counting

Markov chain Monte Carlo (Broder, Jerrum, Sinclair)
randomised algorithms
generally faster algorithms

Correlation decay (Weitz)
deterministic algorithm

Taylor polynomial interpolation (Barvinok)
deterministic
complex evaluations

Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree  n.
Assume p(z) 6= 0 for all |z|  R for some R > 0. (z 2 C)
Let f (z) = ln p(z) for |z| < R and let

Tm(z) =
mX

k=0

f (k)(0)
zk

k !
.

Then for m � C ln(n/") we have that |Tm(z)� f (z)|  "

i.e. Tm(z) = f (z) + t with |t |  "

=) eTm(z) = etef (z) ⇡ (1 + t)p(z).

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/").

Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree  n.
Assume p(z) 6= 0 for all |z|  R for some R > 0. (z 2 C)
Let f (z) = ln p(z) for |z| < R and let

Tm(z) =
mX

k=0

f (k)(0)
zk

k !
.

Then for m � C ln(n/") we have that |Tm(z)� f (z)|  "

i.e. Tm(z) = f (z) + t with |t |  "

=) eTm(z) = etef (z) ⇡ (1 + t)p(z).

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/").

Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree  n.
Assume p(z) 6= 0 for all |z|  R for some R > 0. (z 2 C)
Let f (z) = ln p(z) for |z| < R and let

Tm(z) =
mX

k=0

f (k)(0)
zk

k !
.

Then for m � C ln(n/") we have that |Tm(z)� f (z)|  "

i.e. Tm(z) = f (z) + t with |t |  "

=) eTm(z) = etef (z) ⇡ (1 + t)p(z).

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/").

Taylor Polynomial Interpolation Method (Barvinok)
Let p = pG be a (graph) polynomial of degree  n.
Assume p(z) 6= 0 for all |z|  R for some R > 0. (z 2 C)
Let f (z) = ln p(z) for |z| < R and let

Tm(z) =
mX

k=0

f (k)(0)
zk

k !
.

Then for m � C ln(n/") we have that |Tm(z)� f (z)|  "

i.e. Tm(z) = f (z) + t with |t |  "

=) eTm(z) = etef (z) ⇡ (1 + t)p(z).

Recipe for FPTAS
Identify zero-free region of p containing z (inc. non-disks).
Efficiently compute f (k)(0) for k = 0, . . . ,O(ln n/").

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose

pG(z) = a0 + a1z + · · ·+ anzn.

Wish to compute f (k)(0) for k = 1, . . . ,m = ln(n/") where

f (z) = ln pG(z).

Observation
If we can compute a0, . . . , am, then we can compute
f (0)(0), f (1)(0), . . . , f (m)(0)

p0(z) = p(z)f 0(z)

k !ak =
k�1X

j=0

✓
k � 1

j

◆
aj f (m�j)(0) k = 1, . . . ,m

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose

pG(z) = a0 + a1z + · · ·+ anzn.

Wish to compute f (k)(0) for k = 1, . . . ,m = ln(n/") where

f (z) = ln pG(z).

Observation
If we can compute a0, . . . , am, then we can compute
f (0)(0), f (1)(0), . . . , f (m)(0)

p0(z) = p(z)f 0(z)

k !ak =
k�1X

j=0

✓
k � 1

j

◆
aj f (m�j)(0) k = 1, . . . ,m

How to compute derivatives

Let p be a graph polynomial and G an n-vertex graph. Suppose

pG(z) = a0 + a1z + · · ·+ anzn.

Wish to compute f (k)(0) for k = 1, . . . ,m = ln(n/") where

f (z) = ln pG(z).

Observation
If we can compute a0, . . . , am, then we can compute
f (0)(0), f (1)(0), . . . , f (m)(0)

p0(z) = p(z)f 0(z)

k !ak =
k�1X

j=0

✓
k � 1

j

◆
aj f (m�j)(0) k = 1, . . . ,m

in unknowns f
'" Col

, f-
"'to) , . . -, 44

.e. ::::::::::::
Repeatedly
differentiate
and evaluate
at zero

Example - independence polynomial

ZG(z) =
X

k�0

akzk

where ak = ak (G) = # indep sets of size k in G.

How do we compute a0, a1 . . . , am for m = O(ln n/")?

Check all sets of size  m: takes nO(m) = nO(ln n�ln ") time.
There is a faster way to do this for bounded degree graphs!

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = #indep sets of size k in G

in time poly(n)ck , where c = c(�) is a constant.

Example - independence polynomial

ZG(z) =
X

k�0

akzk

where ak = ak (G) = # indep sets of size k in G.

How do we compute a0, a1 . . . , am for m = O(ln n/")?

Check all sets of size  m: takes nO(m) = nO(ln n�ln ") time.
There is a faster way to do this for bounded degree graphs!

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = #indep sets of size k in G

in time poly(n)ck , where c = c(�) is a constant.

Example - independence polynomial

ZG(z) =
X

k�0

akzk

where ak = ak (G) = # indep sets of size k in G.

How do we compute a0, a1 . . . , am for m = O(ln n/")?

Check all sets of size  m: takes nO(m) = nO(ln n�ln ") time.
There is a faster way to do this for bounded degree graphs!

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = #indep sets of size k in G

in time poly(n)ck , where c = c(�) is a constant.

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = #indep sets of size k in G

in time poly(n)ck , where c = c(�) is a constant.

Lemma implies the following

Theorem (Patel, Regts)
Suppose ZG(z) 6= 0 for all |z|  C and �(G)  �.

Then 9 FPTAS to compute ZG(z) for |z| < C and �(G)  �.

This holds for more general regions than just the disk.

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = ind(�k ,G)

in time cknO(1), where c = c(�).

Write ind(H,G) := # induced copies of H in G

Three observations

Can compute ind(H,G) in time cknO(1) where

|H| = k , H connected and |G| = n, �(G)  �.

ind(H1, ·)ind(H2, ·) =
P

|H||H1|+|H2| cH ind(H, ·)

Suppose ⌧(G) =
P

µH ind(H,G)
and ⌧(G1 [G2) = ⌧(G1) + ⌧(G2) 8G1,G2

=) µH = 0 for all disconnected H. (Csikvári and Frenkel)

✓
k isolated
vertices

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = ind(�k ,G)

in time cknO(1), where c = c(�).

Write ind(H,G) := # induced copies of H in G

Three observations

Can compute ind(H,G) in time cknO(1) where

|H| = k , H connected and |G| = n, �(G)  �.

ind(H1, ·)ind(H2, ·) =
P

|H||H1|+|H2| cH ind(H, ·)

Suppose ⌧(G) =
P

µH ind(H,G)
and ⌧(G1 [G2) = ⌧(G1) + ⌧(G2) 8G1,G2

=) µH = 0 for all disconnected H. (Csikvári and Frenkel)

n choices for a , G-#

¥ IA chains to xz 04

¥79T
.
IA choices for ×,

↓ ↳
a
}✗

L
i ÷ ≤NAK- IT spanning tree i

in H IA choices for XK

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = ind(�k ,G)

in time cknO(1), where c = c(�).

Write ind(H,G) := # induced copies of H in G

Three observations

Can compute ind(H,G) in time cknO(1) where

|H| = k , H connected and |G| = n, �(G)  �.

ind(H1, ·)ind(H2, ·) =
P

|H||H1|+|H2| cH ind(H, ·)

Suppose ⌧(G) =
P

µH ind(H,G)
and ⌧(G1 [G2) = ⌧(G1) + ⌧(G2) 8G1,G2

=) µH = 0 for all disconnected H. (Csikvári and Frenkel)

= CU
, E)

"

/ { s , ≤ V : G- is,] -- Hi } / / { (Sz EU : G- ESD = He} /
= I { Is , , Sz) : Gisi = Hi , G-Esi = He } /

"

/ { s , ≤ V : G- is ,] = Hi } I / { (Sz EU : G- LSD - 1k} /
= I { Is , , Sz) : Gisi

= Hi , G-Esi = He } /

= I a- ind CH, •)

↑

H { 151,52) : fist
UCH /

HIS D= It ,
His] = Hr
Si Us = UH / }

Lemma (Patel, Regts)
If �(G)  �, we can compute

ak = ak (G) = ind(�k ,G)

in time cknO(1), where c = c(�).

Write ind(H,G) := # induced copies of H in G

Three observations

Can compute ind(H,G) in time cknO(1) where

|H| = k , H connected and |G| = n, �(G)  �.

ind(H1, ·)ind(H2, ·) =
P

|H||H1|+|H2| cH ind(H, ·)

Suppose ⌧(G) =
P

µH ind(H,G)
and ⌧(G1 [G2) = ⌧(G1) + ⌧(G2) 8G1,G2

=) µH = 0 for all disconnected H. (Csikvári and Frenkel)

If It is connected then

fail = in dat , G) is additive

Tff) - ✗ flay is additive fer
any × .

c-
' (E) = I Hit indllt , G) addition

H disconnected

look at smallest disconnected It *

for which at# -1-0
HE Hiv Hr

c-
'

CHF = ETH ,) t ÉCHs)
= Ihhyindllt , Ht

dis H since

+ E Ma Ind CH , Hz) = 0 It bigger than
dish Hi and Hu

by minimality
at H*

T 'll-1*1 = [Hit indllt , H*) = WHY by minimality
H discan d- H *

⇒ Max
= 0
,
a contradiction

i. e. there is no smallest disconnected H* for which

Hit* 1=0
,
i. e. at ,+=o for all disconnected H .

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.

Let ⌘1, . . . , ⌘d be the roots of ZG(z) =
P

ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1

pi(G1 [G2) = pi(G1) + pi(G2)

=) pi(G) =
X

|H|k

H connected

cH · ind(H,G)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

Newton
identities

using second
obs

P
,
= - at

Pz ta , P ,
= -92

As 1- 91Put Azp, = -93

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

=) pi(G) =
X

|H|k
H connected

cH · ind(H,G)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

using third
observation

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

=) pi(G) =
X

|H|k
H connected

cH · ind(H,G)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)

all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

=) pi(G) =
X

|H|k
H connected

cH · ind(H,G)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero

p1, . . . , pk hence a1, . . . , ak

Lemma (Patel, Regts)

If �(G)  �, we can compute ak = ak (G) = ind(�k ,G)
in time cknO(1), where c = c(�).

Proof.
Let ⌘1, . . . , ⌘d be the roots of ZG(z) =

P
ar zr

Let pi = ⌘�i
1 + · · ·+ ⌘�i

d .

a0pt + a1pt�1 + · · ·+ at�1p1 = �tat 8t � 1
pi(G1 [G2) = pi(G1) + pi(G2)

=) pi(G) =
X

|H|k
H connected

cH · ind(H,G)

In time cknO(1) can compute
all non-zero ind(H,G) (for connected H, |H|  k)
all cH for which ind(H,G) non-zero
p1, . . . , pk hence a1, . . . , ak

Theorem (Patel, Regts)
Suppose ZG(z) 6= 0 for all |z|  C and �(G)  �.

Then 9 FPTAS to compute ZG(z) for |z| < C and �(G)  �.

�⇤(�) := (��1)��1

�� �c(�) = (��1)��1

(��2)� (Note �⇤ < �c)

Theorem
We have ZG(z) 6= 0 for all z 2 D and �(G)  � where

(1) D = {z : |z|  �⇤} (Dobushin, Shearer)

(2) D = open region containing [0,�c) (Peters, Regts)

(3) D = {z : <(z) � 0, |z|  7
8 tan

⇣
⇡

2(��1)

⌘
} (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing ZG(z) if z 2 D and �(G)  �.

Recover result of Weitz and more

Theorem (Patel, Regts)
Suppose ZG(z) 6= 0 for all |z|  C and �(G)  �.

Then 9 FPTAS to compute ZG(z) for |z| < C and �(G)  �.

�⇤(�) := (��1)��1

�� �c(�) = (��1)��1

(��2)� (Note �⇤ < �c)

Theorem
We have ZG(z) 6= 0 for all z 2 D and �(G)  � where

(1) D = {z : |z|  �⇤} (Dobushin, Shearer)

(2) D = open region containing [0,�c) (Peters, Regts)

(3) D = {z : <(z) � 0, |z|  7
8 tan

⇣
⇡

2(��1)

⌘
} (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing ZG(z) if z 2 D and �(G)  �.

Recover result of Weitz and more

Theorem (Patel, Regts)
Suppose ZG(z) 6= 0 for all |z|  C and �(G)  �.

Then 9 FPTAS to compute ZG(z) for |z| < C and �(G)  �.

�⇤(�) := (��1)��1

�� �c(�) = (��1)��1

(��2)� (Note �⇤ < �c)

Theorem
We have ZG(z) 6= 0 for all z 2 D and �(G)  � where

(1) D = {z : |z|  �⇤} (Dobushin, Shearer)

(2) D = open region containing [0,�c) (Peters, Regts)

(3) D = {z : <(z) � 0, |z|  7
8 tan

⇣
⇡

2(��1)

⌘
} (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing ZG(z) if z 2 D and �(G)  �.

Recover result of Weitz and more

Theorem (Patel, Regts)
Suppose ZG(z) 6= 0 for all |z|  C and �(G)  �.

Then 9 FPTAS to compute ZG(z) for |z| < C and �(G)  �.

�⇤(�) := (��1)��1

�� �c(�) = (��1)��1

(��2)� (Note �⇤ < �c)

Theorem
We have ZG(z) 6= 0 for all z 2 D and �(G)  � where

(1) D = {z : |z|  �⇤} (Dobushin, Shearer)

(2) D = open region containing [0,�c) (Peters, Regts)

(3) D = {z : <(z) � 0, |z|  7
8 tan

⇣
⇡

2(��1)

⌘
} (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing ZG(z) if z 2 D and �(G)  �.

Recover result of Weitz and more

Zero-free regions for ZG where �(G)  d (d = 10)
Green region (Shearer, Dobrushin)
Brown/purple regions (Peters, Regts)
Red region (Csikvári, Bencs)

Explain non-disks

Zeros of ZG and hardness (for �(G)  d)

Zeros of ZTk,d are dense outside blue curve
(de Boer, Buys, Guerini Peters, Regts)

NP-hard to approximate ZG(z) outside blue curve
(Bezáková, Galanis, Goldberg, Stefankovic)

Computing approximation for ZG(z)

Summary
Idea: Approximate f (z) = ln(ZG(z)) by ln(n) term Taylor approx

1) Need to identify zero-free region
2) Compute f (k)(0) in time poly(n)ck

For step 2), note that
Compute f (k)(0) $ compute k th inverse power sum pk

pk (G) =
X

|H|k
H connected

cH · ind(H,G)

“Easy” to compute ind(H,G) when H connected

Computing approximation for ZG(z)

Summary
Idea: Approximate f (z) = ln(ZG(z)) by ln(n) term Taylor approx

1) Need to identify zero-free region
2) Compute f (k)(0) in time poly(n)ck

For step 2), note that
Compute f (k)(0) $ compute k th inverse power sum pk

pk (G) =
X

|H|k
H connected

cH · ind(H,G)

“Easy” to compute ind(H,G) when H connected

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.
partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).
So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.

partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).
So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.
partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).
So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

É¥8 ⑧

G L (G)

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.
partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).
So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.
partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).

So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Matching polynomial

Graph G = (V ,E).

Call M ✓ E a matching if no edges in M are incident.

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.
partition function of monomer-dimer model
special independence polynomials: MG(�) = ZL(G)(�)

Theorem (Heilmann, Lieb 1972)
MG(z) 6= 0 for all G and all z 2 C \ (�1, 0)

Also MG(z) = ZL(G)(z) 6= 0 for |z|  �⇤(2�� 1) = ⇥(1/�).
So our method implies

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Matching polynomial

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)
There is an FPTAS to evaluate MG(�) whenever �(G)  � and
� 2 [0,1).

Using MCMC

Theorem (Jerrum, Sinclair)
There is an FPRAS to evaluate MG(�) for all G and � 2 [0,1).

Matching polynomial

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)
There is an FPTAS to evaluate MG(�) whenever �(G)  � and
� 2 [0,1).

Using MCMC

Theorem (Jerrum, Sinclair)
There is an FPRAS to evaluate MG(�) for all G and � 2 [0,1).

Matching polynomial

MG(�) :=
X

matchings M of G

�|M| =
X

k�0

mk�
k

where mk = # of matchings of size k in G.

There is an FPTAS to evaluate MG(z) with �(G)  � and
z 2 C \ (�1,��⇤(2�� 1)).

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)
There is an FPTAS to evaluate MG(�) whenever �(G)  � and
� 2 [0,1).

Using MCMC

Theorem (Jerrum, Sinclair)
There is an FPRAS to evaluate MG(�) for all G and � 2 [0,1).

General result

Definition
Let p = pG be a graph polynomial, i.e.

pG(z) =
X

k

ak (G)zk .

Call p a bounded induced graph counting polynomial (BIGCP)
if

pG1[G2 = pG1 · pG2

ak (G) =
P

|H|=O(k) sH,k · ind(H,G)

sH,k can be computed in exp(O(k))-time

c.f. independence polynomial

Theorem (Patel, Regts)
Let p be a BIGCP with pG(z) 6= 0 for |z|  K = K (�).

9 FPTAS to compute pG(z) for |z|  K and �(G)  �.

General result

Definition
Let p = pG be a graph polynomial, i.e.

pG(z) =
X

k

ak (G)zk .

Call p a bounded induced graph counting polynomial (BIGCP)
if

pG1[G2 = pG1 · pG2

ak (G) =
P

|H|=O(k) sH,k · ind(H,G)

sH,k can be computed in exp(O(k))-time

c.f. independence polynomial

Theorem (Patel, Regts)
Let p be a BIGCP with pG(z) 6= 0 for |z|  K = K (�).

9 FPTAS to compute pG(z) for |z|  K and �(G)  �.

Chromatic polynomial

For a graph G = (V ,E)

�G(q) = # proper q-colourings of G;

hence �G1[G2(q) = �G1(q) · �G2(q) Examples

Random cluster model formulation

�G(q) =
X

A✓E

(�1)|A|qk(A) =:
X

i

ai(G)qi ,

where
an = 1
an�1 = (�1)ind(e,G)

an�2 = ind(P3,G)� ind(K3,G) + ind(2K2,G) etc

Hence zn�G(z�1) is a BIGCP

919-1119 - 2) = ✗triangle (E)

Chromatic polynomial

For a graph G = (V ,E)

�G(q) = # proper q-colourings of G;

hence �G1[G2(q) = �G1(q) · �G2(q)

Examples

Random cluster model formulation

�G(q) =
X

A✓E

(�1)|A|qk(A) =:
X

i

ai(G)qi ,

where
an = 1
an�1 = (�1)ind(e,G)

an�2 = ind(P3,G)� ind(K3,G) + ind(2K2,G) etc

Hence zn�G(z�1) is a BIGCP

Chromatic polynomial

For a graph G = (V ,E)

�G(q) = # proper q-colourings of G;

hence �G1[G2(q) = �G1(q) · �G2(q) Examples

Random cluster model formulation

�G(q) =
X

A✓E

(�1)|A|qk(A) =:
X

i

ai(G)qi ,

where
an = 1
an�1 = (�1)ind(e,G)

an�2 = ind(P3,G)� ind(K3,G) + ind(2K2,G) etc

Hence zn�G(z�1) is a BIGCP

Chromatic polynomial

For a graph G = (V ,E)

�G(q) = # proper q-colourings of G;

hence �G1[G2(q) = �G1(q) · �G2(q) Examples

Random cluster model formulation

�G(q) =
X

A✓E

(�1)|A|qk(A) =:
X

i

ai(G)qi ,

where
an = 1
an�1 = (�1)ind(e,G)

an�2 = ind(P3,G)� ind(K3,G) + ind(2K2,G) etc

Hence zn�G(z�1) is a BIGCP

Chromatic polynomial

The polynomial zn�G(z�1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)
�G(z) 6= 0 whenever �(G)  � and |z| � K (�) = 6.91�.

Using our method, this implies

There is an FPTAS to evaluate �G(z) for graphs of maximum
degree � whenever |z| � K (�) = 6.91�.

Many results
FPTAS for q � 2�(G) (Liu-Srivastava-Sinclair)
FPRAS for q � 11

6 �(G) (Vigoda)
q � (11

6 � ")�(G) (CDMPP)
No FPTAS for q < �(G) unless P = NP
FP(RT)AS conjectured for q > �(G)

Chromatic polynomial

The polynomial zn�G(z�1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)
�G(z) 6= 0 whenever �(G)  � and |z| � K (�) = 6.91�.

Using our method, this implies

There is an FPTAS to evaluate �G(z) for graphs of maximum
degree � whenever |z| � K (�) = 6.91�.

Many results
FPTAS for q � 2�(G) (Liu-Srivastava-Sinclair)
FPRAS for q � 11

6 �(G) (Vigoda)
q � (11

6 � ")�(G) (CDMPP)
No FPTAS for q < �(G) unless P = NP
FP(RT)AS conjectured for q > �(G)

Chromatic polynomial

The polynomial zn�G(z�1) is a BIGCP

Theorem (Jackson, Procacci and Sokal)
�G(z) 6= 0 whenever �(G)  � and |z| � K (�) = 6.91�.

Using our method, this implies

There is an FPTAS to evaluate �G(z) for graphs of maximum
degree � whenever |z| � K (�) = 6.91�.

Many results
FPTAS for q � 2�(G) (Liu-Srivastava-Sinclair)
FPRAS for q � 11

6 �(G) (Vigoda)
q � (11

6 � ")�(G) (CDMPP)
No FPTAS for q < �(G) unless P = NP
FP(RT)AS conjectured for q > �(G)

Chromatic polynomial

The polynomial zn�G(z�1) is a BIGCP

Conjecture (Sokal)
�G(z) 6= 0 if <(z) > �(G).

So our method implies

Conjecture (Folklore)
There is an FPTAS for �G(q) whenever q > �(G).

Not quite immediate, but not too hard: requires some
conformal mapping

HE

Chromatic polynomial

The polynomial zn�G(z�1) is a BIGCP

Conjecture (Sokal)
�G(z) 6= 0 if <(z) > �(G).

So our method implies

Conjecture (Folklore)
There is an FPTAS for �G(q) whenever q > �(G).

Not quite immediate, but not too hard: requires some
conformal mapping-

