

Viresh Patel and Guus Regts

Summer school on algorithms, dynamics, and information flow in networks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Is there an efficient algorithm to count

- 1) spanning trees in a graph?
- 2) independent sets of a graph?
- 3) proper *q*-colourings of a graph?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Is there an efficient algorithm to count

- 1) spanning trees in a graph?
- 2) independent sets of a graph?
- 3) proper *q*-colourings of a graph?
 - 1 Yes matrix tree theorem
 - 2,3 Problems are computationally hard (on bounded degree graphs)

(ロ) (同) (三) (三) (三) (○) (○)

Is there an efficient algorithm to count

- 1) spanning trees in a graph?
- 2) independent sets of a graph?
- 3) proper *q*-colourings of a graph?
 - 1 Yes matrix tree theorem
 - 2,3 Problems are computationally hard (on bounded degree graphs)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Is there an efficient algorithm to approximately count
 - independent sets of a graph?
 - proper *q*-colourings of a graph?

Is there an efficient algorithm to count

- 1) spanning trees in a graph?
- 2) independent sets of a graph?
- 3) proper *q*-colourings of a graph?
 - 1 Yes matrix tree theorem
 - 2,3 Problems are computationally hard (on bounded degree graphs)

(ロ) (同) (三) (三) (三) (○) (○)

- Is there an efficient algorithm to approximately count
 - independent sets of a graph?
 - proper *q*-colourings of a graph?

Breakdown

- Part I, II Efficient approximation algorithms
- Part III, IV Hardness

Is there an efficient algorithm to count

- 1) spanning trees in a graph?
- 2) independent sets of a graph?
- 3) proper *q*-colourings of a graph?
 - 1 Yes matrix tree theorem
 - 2,3 Problems are computationally hard (on bounded degree graphs)

- Is there an efficient algorithm to approximately count
 - independent sets of a graph?
 - proper *q*-colourings of a graph?

Breakdown

- Part I, II Efficient approximation algorithms
- Part III, IV Hardness

Connection to statistical physics

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

Hard-core model

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Hard-core model

- λ is a temperature parameter
- For $S \subseteq V$ independent, we have $\mathbb{P}(S) \propto \lambda^{|S|}$

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

Hard-core model

- λ is a temperature parameter
- For $S \subseteq V$ independent, we have $\mathbb{P}(S) \propto \lambda^{|S|}$
- $\mathbb{P}(S) = \lambda^{|S|} / Z_G(\lambda)$ where

$$Z_G(\lambda) = \sum_{S \subseteq V ext{ independent}} \lambda^{|S|}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Graph G = (V, E)

 $S \subseteq V$ is an independent set if $\forall u, v \in S, uv \notin E$.

Hard-core model

- λ is a temperature parameter
- For $S \subseteq V$ independent, we have $\mathbb{P}(S) \propto \lambda^{|S|}$
- $\mathbb{P}(S) = \lambda^{|S|} / Z_G(\lambda)$ where

$$Z_G(\lambda) = \sum_{\mathcal{S} \subseteq V ext{ independent}} \lambda^{|\mathcal{S}|}$$

is the partition function of the hard-core model (a.k.a the independence polynomial)

$$G = (V, E)$$
 a graph

$$Z_G(\lambda) = \sum_{S \subseteq V ext{ independent}} \lambda^{|S|} = \sum_{k \ge 0} a_k \lambda^k,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $a_k = \#$ of independent sets of size k (in G).

$$G = (V, E)$$
 a graph

$$Z_G(\lambda) = \sum_{S \subseteq V ext{ independent}} \lambda^{|S|} = \sum_{k \geq 0} a_k \lambda^k,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where $a_k = \#$ of independent sets of size *k* (in *G*).

- $Z_G(1) = #$ independent sets in G
- $Z'_G(1)/Z_G(1)$ = average size of independent set

$$G = (V, E)$$
 a graph

$$Z_G(\lambda) = \sum_{S \subseteq V ext{ independent}} \lambda^{|S|} = \sum_{k \geq 0} a_k \lambda^k,$$

where $a_k = \#$ of independent sets of size *k* (in *G*).

- $Z_G(1) = #$ independent sets in G
- $Z'_G(1)/Z_G(1)$ = average size of independent set
- Z_G(λ) for large λ determines size of largest independent set

$$G = (V, E)$$
 a graph

$$Z_G(\lambda) = \sum_{S \subseteq V ext{ independent}} \lambda^{|S|} = \sum_{k \geq 0} a_k \lambda^k,$$

where $a_k = \#$ of independent sets of size *k* (in *G*).

- $Z_G(1) = #$ independent sets in G
- $Z'_G(1)/Z_G(1)$ = average size of independent set
- Z_G(λ) for large λ determines size of largest independent set

Q: Is there efficient algorithm to approximately evaluate $Z_G(\lambda)$ at different λ ?

$$G = (V, E) \text{ a graph} \qquad i \neq i \neq j \neq 2\lambda$$

Independence polynomial
$$Z_G(\lambda) = \sum_{S \subseteq V \text{ independent}} \lambda^{|S|} = \sum_{k \ge 0} a_k \lambda^k,$$

where $a_k = \#$ of independent sets of size k (in G).

- $Z_G(1) = #$ independent sets in G
- $Z'_G(1)/Z_G(1)$ = average size of independent set
- Z_G(λ) for large λ determines size of largest independent set

Q: Is there efficient algorithm to approximately evaluate $Z_G(\lambda)$ at different λ ?

Examples

 $Z_{G_1}(\lambda) Z_{G_2}(\lambda)$ $\mathcal{L}_{G_1 \cup G_2}(\lambda) =$ = Z X · X 1521 Z 2¹⁵¹ 5, ind in G, S ind in Givez Sz ind inhz $\sum \lambda^{15_1} \sum \lambda^{15_2}$ sinding, Szind $(1+\lambda)^{k}$ k

Graph polynomials / partition functions

We will look at

- Independence polynomial (hard-core model)
- Matching polynomial (monomer-dimer model)

(ロ) (同) (三) (三) (三) (○) (○)

- Chromatic polynomial
- Partition function of Ising model

Graph polynomials / partition functions

We will look at

- Independence polynomial (hard-core model)
- Matching polynomial (monomer-dimer model)
- Chromatic polynomial
- Partition function of Ising model

Perspectives

 Enumeration - generating functions for counting objects in graphs

(ロ) (同) (三) (三) (三) (○) (○)

Statistical physics - partition functions

Graph polynomials / partition functions

We will look at

- Independence polynomial (hard-core model)
- Matching polynomial (monomer-dimer model)
- Chromatic polynomial
- Partition function of Ising model

Perspectives

- Enumeration generating functions for counting objects in graphs
- Statistical physics partition functions

Questions

- Where are the roots of the graph polynomials?
- What is the computational complexity of evaluating the graph polynomials (approximately)?

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose *f* is a graph parameter,

(e.g. $f(G) = Z_G(1) = \#$ independent sets in G = (V, E)).

(日) (日) (日) (日) (日) (日) (日)

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose *f* is a graph parameter,

(e.g. $f(G) = Z_G(1) = \#$ independent sets in G = (V, E)).

An FPTAS is an algorithm that, given input *G* and $0 < \varepsilon < 1$,

(日) (日) (日) (日) (日) (日) (日)

- estimates f(G) within a multiplicative factor $1 \pm \varepsilon$
- in time polynomial in n = |V| and ε^{-1} .

Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose *f* is a graph parameter,

(e.g. $f(G) = Z_G(1) = \#$ independent sets in G = (V, E)).

An FPTAS is an algorithm that, given input *G* and $0 < \varepsilon < 1$,

- estimates f(G) within a multiplicative factor $1 \pm \varepsilon$
- in time polynomial in n = |V| and ε^{-1} .

An FPRAS is a randomised algorithm that, given input *G* and $0 < \varepsilon < 1$,

- estimates f(G) within a multiplicative factor $1 \pm \varepsilon$
- in time polynomial in n = |V| and ε^{-1}
- with probability $\geq \frac{3}{4}$.

Let
$$G = (V, E)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Let G = (V, E) $Z_G(\lambda) = \sum_{S \subseteq V \text{ independent}} \lambda^{|S|}$ $\Delta(G) \leq \Delta$ • $0 \leq \lambda < \lambda_c \implies \exists \text{ FPTAS for } Z_G(\lambda) \text{ (Weitz)}$ • $\lambda > \lambda_c \implies \exists \text{ FPTAS for } Z_G(\lambda) \text{ unless } P = \text{NP}$

(Sly and Sun) (Galanis, Štefankovič, Vigoda)

where

$$\lambda_c = \lambda_c(\Delta) := rac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}.$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Three methods for approximate counting

Markov chain Monte Carlo (Broder, Jerrum, Sinclair)

(ロ) (同) (三) (三) (三) (○) (○)

- randomised algorithms
- generally faster algorithms

Correlation decay (Weitz)

deterministic algorithm

Taylor polynomial interpolation (Barvinok)

- deterministic
- complex evaluations

- Let $p = p_G$ be a (graph) polynomial of degree $\leq n$.
- Assume $p(z) \neq 0$ for all $|z| \leq R$ for some R > 0. $(z \in \mathbb{C})$
- Let $f(z) = \ln p(z)$ for |z| < R and let

$$T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}.$$

(日) (日) (日) (日) (日) (日) (日)

- Let $p = p_G$ be a (graph) polynomial of degree $\leq n$.
- Assume $p(z) \neq 0$ for all $|z| \leq R$ for some R > 0. $(z \in \mathbb{C})$
- Let $f(z) = \ln p(z)$ for |z| < R and let

$$T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}.$$

(日) (日) (日) (日) (日) (日) (日)

Then for $m \ge C \ln(n/\varepsilon)$ we have that $|T_m(z) - f(z)| \le \varepsilon$

- Let $p = p_G$ be a (graph) polynomial of degree $\leq n$.
- Assume $p(z) \neq 0$ for all $|z| \leq R$ for some R > 0. $(z \in \mathbb{C})$
- Let $f(z) = \ln p(z)$ for |z| < R and let

$$T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}.$$

Then for $m \ge C \ln(n/\varepsilon)$ we have that $|T_m(z) - f(z)| \le \varepsilon$

i.e.
$$T_m(z) = f(z) + t$$
 with $|t| \le \varepsilon$
 $\implies e^{T_m(z)} = e^t e^{f(z)} \approx (1+t)p(z).$

(日) (日) (日) (日) (日) (日) (日)

- Let $p = p_G$ be a (graph) polynomial of degree $\leq n$.
- Assume $p(z) \neq 0$ for all $|z| \leq R$ for some R > 0. $(z \in \mathbb{C})$
- Let $f(z) = \ln p(z)$ for |z| < R and let

$$T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}.$$

Then for $m \ge C \ln(n/\varepsilon)$ we have that $|T_m(z) - f(z)| \le \varepsilon$

i.e.
$$T_m(z) = f(z) + t$$
 with $|t| \le \varepsilon$
 $\implies e^{T_m(z)} = e^t e^{f(z)} \approx (1+t)p(z).$

Recipe for FPTAS

Identify zero-free region of p containing z (inc. non-disks).

• Efficiently compute $f^{(k)}(0)$ for $k = 0, ..., O(\ln n/\varepsilon)$.

How to compute derivatives

Let *p* be a graph polynomial and *G* an *n*-vertex graph. Suppose

$$p_G(z) = a_0 + a_1 z + \cdots + a_n z^n.$$

Wish to compute $f^{(k)}(0)$ for $k = 1, ..., m = \ln(n/\varepsilon)$ where

$$f(z)=\ln p_G(z).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

How to compute derivatives

Let *p* be a graph polynomial and *G* an *n*-vertex graph. Suppose

$$p_G(z) = a_0 + a_1 z + \cdots + a_n z^n.$$

Wish to compute $f^{(k)}(0)$ for $k = 1, ..., m = \ln(n/\varepsilon)$ where

$$f(z)=\ln p_G(z).$$

(日) (日) (日) (日) (日) (日) (日)

Observation

If we can compute a_0, \ldots, a_m , then we can compute $f^{(0)}(0), f^{(1)}(0), \ldots, f^{(m)}(0)$

How to compute derivatives

Let *p* be a graph polynomial and *G* an *n*-vertex graph. Suppose

$$p_G(z) = a_0 + a_1 z + \cdots + a_n z^n.$$

Wish to compute $f^{(k)}(0)$ for $k = 1, ..., m = \ln(n/\varepsilon)$ where

$$f(z)=\ln p_G(z).$$

Observation

If we can compute a_0, \ldots, a_m , then we can compute $f^{(0)}(0), f^{(1)}(0), \ldots, f^{(m)}(0)$

Example - independence polynomial

$$Z_G(z) = \sum_{k \ge 0} a_k z^k$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $a_k = a_k(G) = #$ indep sets of size k in G.

Example - independence polynomial

$$Z_G(z) = \sum_{k \ge 0} a_k z^k$$

where $a_k = a_k(G) = \#$ indep sets of size k in G.

How do we compute $a_0, a_1 \dots, a_m$ for $m = O(\ln n/\varepsilon)$?

- Check all sets of size $\leq m$: takes $n^{O(m)} = n^{O(\ln n \ln \varepsilon)}$ time.
- There is a faster way to do this for bounded degree graphs!

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>
Example - independence polynomial

$$Z_G(z) = \sum_{k \ge 0} a_k z^k$$

where $a_k = a_k(G) = #$ indep sets of size k in G.

How do we compute $a_0, a_1 \dots, a_m$ for $m = O(\ln n/\varepsilon)$?

- Check all sets of size $\leq m$: takes $n^{O(m)} = n^{O(\ln n \ln \varepsilon)}$ time.
- There is a faster way to do this for bounded degree graphs!

Lemma (Patel, Regts)

If $\Delta(G) \leq \Delta$, we can compute

 $a_k = a_k(G) = #$ indep sets of size k in G

in time poly(n) c^k , where $c = c(\Delta)$ is a constant.

If $\Delta(G) \leq \Delta$, we can compute

 $a_k = a_k(G) = \#$ indep sets of size k in G

in time $poly(n)c^k$, where $c = c(\Delta)$ is a constant.

Lemma implies the following

Theorem (Patel, Regts)

Suppose $Z_G(z) \neq 0$ for all $|z| \leq C$ and $\Delta(G) \leq \Delta$.

Then \exists FPTAS to compute $Z_G(z)$ for |z| < C and $\Delta(G) \leq \Delta$.

(日) (日) (日) (日) (日) (日) (日)

This holds for more general regions than just the disk.

If $\Delta(G) \leq \Delta$, we can compute $a_k = a_k(G) = \operatorname{ind}(\circ^k, G)$ k isolated in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Write ind(H, G) := # induced copies of H in G

If $\Delta(G) \leq \Delta$, we can compute

$$a_k = a_k(G) = \operatorname{ind}(\circ^k, G)$$

in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Write ind(H, G) := # induced copies of H in G

Three observations

Can compute ind(H, G) in time $c^k n^{O(1)}$ where |H| = k, H connected and |G| = n, $\Delta(G) \leq \Delta$. n chairy for zi SA chairy for zi SA chairs for zi Ģ ≤n/ T spanning thee SA choices for 2p

If $\Delta(G) \leq \Delta$, we can compute

$$a_k = a_k(G) = \operatorname{ind}(\circ^k, G)$$

in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Write $\operatorname{ind}(H, G) := \#$ induced copies of H in $G = (\cup, \mathcal{E})$ Three observations

Can compute $\operatorname{ind}(H, G)$ in time $c^k n^{O(1)}$ where |H| = k, H connected and |G| = n, $\Delta(G) \leq \Delta$.

$$\frac{\operatorname{ind}(H_1, \cdot)\operatorname{ind}(H_2, \cdot) = \sum_{|H| \le |H_1| + |H_2|} c_H \operatorname{ind}(H, \cdot)}{\left| \left[\left\{ S_1 \le V : G_1 : S_1 : H_1 : H_1 \right\} \right] \left| \left\{ \left\{ S_2 \in V : G_1 : G_2 : H_2 \right\} \right\} \right] \right]}$$

$$= \left[\left\{ \left\{ (S_1, S_2) : G_1 : G_2 : H_1 : G_2 : H_2 : H_2 : H_2 \right\} \right]$$

 $\left[\{ S_1 \leq V : G[S_1] = H_1 \} | \{ \{ (S_2 \in V : G[S_2] - |I_1] \} | \{ (S_1, S_2) : G[S_1] = H_1, G(S_2] = H_2 \} | \} \right]$ Z (Hind (H, .) $(S_1, S_2) := S_1, S_2 \subseteq$ HISJ=HI H[52] = 14

 $S_1 U S_2 = U(H)/3$

If $\Delta(G) \leq \Delta$, we can compute $a_k = a_k(G) = \operatorname{ind}(\circ^k, G)$

in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Write ind(H, G) := # induced copies of H in G

Three observations

Can compute $\operatorname{ind}(H, G)$ in time $c^k n^{O(1)}$ where |H| = k, H connected and |G| = n, $\Delta(G) \le \Delta$.

$$\operatorname{ind}(H_1,\cdot)\operatorname{ind}(H_2,\cdot) = \sum_{|H| \le |H_1| + |H_2|} c_H \operatorname{ind}(H,\cdot)$$

Suppose $\tau(G) = \sum \mu_H \operatorname{ind}(H, G)$ and $\tau(G_1 \cup G_2) = \tau(G_1) + \tau(G_2) \quad \forall G_1, G_2$ $\implies \mu_H = 0 \text{ for all disconnected } H.$ (Csikvári and Frenkel)

If H is converted then

$$f(G) = in d(H, G)$$
 is additive
 $T(G) - \lambda f(G)$ is additive for
 $ny \lambda$.
 $T'(G) = \sum M_{H} ind(H, G)$ additue
H disconnected
Lock at smallest disconverted H^{*}
for which $M_{H^{*}} \neq 0$
 $H^{*} = H_{I} \cup H^{*}$
 $T'(H^{*}) = T(H_{I}) + T(H_{2})$
 $= \sum M_{H} ind(H_{I}, H_{I})$
 $dist H$ ind $(H, H_{2}) = 0$ H bigger than
 H_{I} and H_{2}
 $T'(H^{*}) = \sum M_{H} ind(H_{I}, H_{2}) = 0$ H bigger than
 H_{I} and H_{2}
 $T'(H^{*}) = \sum M_{H} ind(H_{I}, H^{*}) = M_{H} \times by$ minimality
 $ef H^{*}$
 $= M_{H} ind(H_{I}, H^{*}) = M_{H} \times by$ minimality
 H discon
i.e. here is no smallest disconnected H^{*} for which
 $M_{H^{*}} \neq 0$, i.e. $M_{H} = 0$ for all disconnected H .

If $\Delta(G) \leq \Delta$, we can compute $a_k = a_k(G) = ind(\circ^k, G)$ in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = ind(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let
$$\eta_1, \ldots, \eta_d$$
 be the roots of $Z_G(z) = \sum a_r z^r$
Let $p_i = \eta_1^{-i} + \cdots + \eta_d^{-i}$.

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = ind(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let
$$\eta_1, \ldots, \eta_d$$
 be the roots of $Z_G(z) = \sum a_r z^r$
Let $p_i = \eta_1^{-i} + \cdots + \eta_d^{-i}$.
 $a_0 p_t + a_1 p_{t-1} + \cdots + a_{t-1} p_1 = -t a_t$ $\forall t \ge 1$

$$\overset{\text{Using second}}{\Longrightarrow} p_i(G) = \sum_{|H| \leq k} c_H \cdot \operatorname{ind}(H,G)$$

$$P_{1} = -a_{1}$$

$$P_{2} + a_{1}P_{1} = -a_{2}$$

$$P_{3} + a_{1}P_{2} + a_{2}P_{1} = -a_{3}$$

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = ind(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let η_1, \dots, η_d be the roots of $Z_G(z) = \sum a_r z^r$ Let $p_i = \eta_1^{-i} + \dots + \eta_d^{-i}$. $a_0 p_t + a_1 p_{t-1} + \dots + a_{t-1} p_1 = -ta_t \quad \forall t \ge 1$ $p_i(G_1 \cup G_2) = p_i(G_1) + p_i(G_2)$ $\implies p_i(G) = \sum_{\substack{|H| \le k \\ H \text{ connected}}} c_H \cdot \operatorname{ind}(H, G) \quad \text{Using finited}$

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = ind(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let η_1, \dots, η_d be the roots of $Z_G(z) = \sum a_r z^r$ Let $p_i = \eta_1^{-i} + \dots + \eta_d^{-i}$. $a_0 p_t + a_1 p_{t-1} + \dots + a_{t-1} p_1 = -ta_t \quad \forall t \ge 1$ $p_i(G_1 \cup G_2) = p_i(G_1) + p_i(G_2)$ $\Longrightarrow p_i(G) = \sum_{\substack{|H| \le k \\ H \text{ connected}}} c_H \cdot \operatorname{ind}(H, G)$

In time $c^k n^{O(1)}$ can compute

• all non-zero ind(H, G) (for connected $H, |H| \le k$)

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = ind(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let η_1, \dots, η_d be the roots of $Z_G(z) = \sum a_r z^r$ Let $p_i = \eta_1^{-i} + \dots + \eta_d^{-i}$. $a_0 p_t + a_1 p_{t-1} + \dots + a_{t-1} p_1 = -ta_t \quad \forall t \ge 1$ $p_i(G_1 \cup G_2) = p_i(G_1) + p_i(G_2)$ $\Longrightarrow p_i(G) = \sum_{\substack{|H| \le k \\ H \text{ connected}}} c_H \cdot \operatorname{ind}(H, G)$

In time $c^k n^{O(1)}$ can compute

- all non-zero ind(H, G) (for connected $H, |H| \le k$)
- all c_H for which ind(H, G) non-zero

If
$$\Delta(G) \leq \Delta$$
, we can compute $a_k = a_k(G) = \operatorname{ind}(\circ^k, G)$
in time $c^k n^{O(1)}$, where $c = c(\Delta)$.

Proof.

Let η_1, \dots, η_d be the roots of $Z_G(z) = \sum a_r z^r$ Let $p_i = \eta_1^{-i} + \dots + \eta_d^{-i}$. $a_0 p_t + a_1 p_{t-1} + \dots + a_{t-1} p_1 = -ta_t \quad \forall t \ge 1$ $p_i(G_1 \cup G_2) = p_i(G_1) + p_i(G_2)$ $\Longrightarrow p_i(G) = \sum_{\substack{|H| \le k \\ H \text{ connected}}} c_H \cdot \operatorname{ind}(H, G)$

In time $c^k n^{O(1)}$ can compute

- all non-zero ind(H, G) (for connected $H, |H| \le k$)
- all c_H for which ind(H, G) non-zero

• $p_1, ..., p_k$ hence $a_1, ..., a_k$

Suppose $Z_G(z) \neq 0$ for all $|z| \leq C$ and $\Delta(G) \leq \Delta$.

Then \exists FPTAS to compute $Z_G(z)$ for |z| < C and $\Delta(G) \leq \Delta$.

Suppose $Z_G(z) \neq 0$ for all $|z| \leq C$ and $\Delta(G) \leq \Delta$.

Then \exists FPTAS to compute $Z_G(z)$ for |z| < C and $\Delta(G) \leq \Delta$.

$$\lambda^*(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}} \quad \lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \quad \text{(Note } \lambda^* < \lambda_c\text{)}$$

Theorem

We have $Z_G(z) \neq 0$ for all $z \in D$ and $\Delta(G) \leq \Delta$ where

(1) $D = \{z : |z| \le \lambda^*\}$ (Dobushin, Shearer)

(2) $D = open region containing [0, <math>\lambda_c$) (Peters, Regts)

(3)
$$D = \{z : \Re(z) \ge 0, |z| \le \frac{7}{8} \tan\left(\frac{\pi}{2(\Delta-1)}\right)\}$$
 (Csikvári, Bencs)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Suppose $Z_G(z) \neq 0$ for all $|z| \leq C$ and $\Delta(G) \leq \Delta$.

Then \exists FPTAS to compute $Z_G(z)$ for |z| < C and $\Delta(G) \leq \Delta$.

$$\lambda^*(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}} \quad \lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \quad \text{(Note } \lambda^* < \lambda_c\text{)}$$

Theorem

We have $Z_G(z) \neq 0$ for all $z \in D$ and $\Delta(G) \leq \Delta$ where

(1) $D = \{z : |z| \le \lambda^*\}$ (Dobushin, Shearer)

(2) $D = open region containing [0, <math>\lambda_c$) (Peters, Regts)

(3)
$$D = \{z : \Re(z) \ge 0, |z| \le \frac{7}{8} \tan\left(\frac{\pi}{2(\Delta-1)}\right)\}$$
 (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing $Z_G(z)$ if $z \in D$ and $\Delta(G) \leq \Delta$.

Suppose $Z_G(z) \neq 0$ for all $|z| \leq C$ and $\Delta(G) \leq \Delta$.

Then \exists FPTAS to compute $Z_G(z)$ for |z| < C and $\Delta(G) \leq \Delta$.

$$\lambda^*(\Delta) := \frac{(\Delta-1)^{\Delta-1}}{\Delta^{\Delta}} \quad \lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \quad \text{(Note } \lambda^* < \lambda_c\text{)}$$

Theorem

We have $Z_G(z) \neq 0$ for all $z \in D$ and $\Delta(G) \leq \Delta$ where

(1) $D = \{z : |z| \le \lambda^*\}$ (Dobushin, Shearer)

(2) $D = open region containing [0, <math>\lambda_c$) (Peters, Regts)

(3)
$$D = \{z : \Re(z) \ge 0, |z| \le \frac{7}{8} \tan\left(\frac{\pi}{2(\Delta-1)}\right)\}$$
 (Csikvári, Bencs)

Implies the following:

There is an FPTAS for computing $Z_G(z)$ if $z \in D$ and $\Delta(G) \leq \Delta$.

(日) (日) (日) (日) (日) (日) (日)

• Recover result of Weitz and more

Zero-free regions for Z_G where $\Delta(G) \leq d$ (d = 10)

- Green region
- Brown/purple regions
- Red region

Explain non-disks

(Shearer, Dobrushin)

- (Peters, Regts)
- (Csikvári, Bencs)

Zeros of Z_G and hardness (for $\Delta(G) \leq d$)

- Zeros of Z_{T_{k,d}} are dense outside blue curve (de Boer, Buys, Guerini Peters, Regts)
- NP-hard to approximate Z_G(z) outside blue curve (Bezáková, Galanis, Goldberg, Stefankovic)

Computing approximation for $Z_G(z)$

Summary

Idea: Approximate $f(z) = \ln(Z_G(z))$ by $\ln(n)$ term Taylor approx

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1) Need to identify zero-free region
- 2) Compute $f^{(k)}(0)$ in time $poly(n)c^k$

Computing approximation for $Z_G(z)$

Summary

۲

Idea: Approximate $f(z) = \ln(Z_G(z))$ by $\ln(n)$ term Taylor approx

- 1) Need to identify zero-free region
- 2) Compute $f^{(k)}(0)$ in time $poly(n)c^k$

For step 2), note that

• Compute $f^{(k)}(0) \leftrightarrow$ compute kth inverse power sum p_k

 $p_k(G) = \sum_{\substack{|H| \le k \\ H \text{ connected}}} c_H \cdot \operatorname{ind}(H, G)$

(日) (日) (日) (日) (日) (日) (日)

• "Easy" to compute ind(H, G) when H connected

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

where $m_k = \#$ of matchings of size *k* in *G*.

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

where $m_k = \#$ of matchings of size *k* in *G*.

- partition function of monomer-dimer model
- special independence polynomials: $M_G(\lambda) = Z_{L(G)}(\lambda)$

・ コット (雪) (小田) (コット 日)

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

where $m_k = \#$ of matchings of size k in G.

- partition function of monomer-dimer model
- special independence polynomials: $M_G(\lambda) = Z_{L(G)}(\lambda)$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Heilmann, Lieb 1972)

 $M_G(z)
eq 0$ for all G and all $z \in \mathbb{C} \setminus (-\infty, 0)$

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

where $m_k = \#$ of matchings of size k in G.

- partition function of monomer-dimer model
- special independence polynomials: $M_G(\lambda) = Z_{L(G)}(\lambda)$

Theorem (Heilmann, Lieb 1972)

 $M_G(z)
eq 0$ for all G and all $z \in \mathbb{C} \setminus (-\infty, 0)$

Also
$$M_G(z) = Z_{L(G)}(z) \neq 0$$
 for $|z| \leq \lambda^*(2\Delta - 1) = \Theta(1/\Delta)$.

(ロ) (同) (三) (三) (三) (○) (○)

Graph G = (V, E).

Call $M \subseteq E$ a matching if no edges in M are incident.

$$M_G(\lambda):=\sum_{ ext{matchings }M ext{ of }G}\lambda^{|M|}=\sum_{k\geq 0}m_k\lambda^k$$

where $m_k = \#$ of matchings of size k in G.

- partition function of monomer-dimer model
- special independence polynomials: $M_G(\lambda) = Z_{L(G)}(\lambda)$

Theorem (Heilmann, Lieb 1972)

 $M_G(z)
eq 0$ for all G and all $z \in \mathbb{C} \setminus (-\infty, 0)$

Also $M_G(z) = Z_{L(G)}(z) \neq 0$ for $|z| \le \lambda^*(2\Delta - 1) = \Theta(1/\Delta)$. So our method implies

There is an FPTAS to evaluate $M_G(z)$ with $\Delta(G) \leq \Delta$ and $z \in \mathbb{C} \setminus (-\infty, -\lambda^*(2\Delta - 1))$.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

(日) (日) (日) (日) (日) (日) (日)

where $m_k = \#$ of matchings of size *k* in *G*.

There is an FPTAS to evaluate $M_G(z)$ with $\Delta(G) \leq \Delta$ and $z \in \mathbb{C} \setminus (-\infty, -\lambda^*(2\Delta - 1))$.

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

where $m_k = \#$ of matchings of size *k* in *G*.

There is an FPTAS to evaluate $M_G(z)$ with $\Delta(G) \leq \Delta$ and $z \in \mathbb{C} \setminus (-\infty, -\lambda^*(2\Delta - 1))$.

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate $M_G(\lambda)$ whenever $\Delta(G) \leq \Delta$ and $\lambda \in [0, \infty)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$M_G(\lambda) := \sum_{ ext{matchings } M ext{ of } G} \lambda^{|M|} = \sum_{k \geq 0} m_k \lambda^k$$

where $m_k = \#$ of matchings of size *k* in *G*.

There is an FPTAS to evaluate $M_G(z)$ with $\Delta(G) \leq \Delta$ and $z \in \mathbb{C} \setminus (-\infty, -\lambda^*(2\Delta - 1))$.

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate $M_G(\lambda)$ whenever $\Delta(G) \leq \Delta$ and $\lambda \in [0, \infty)$.

Using MCMC

Theorem (Jerrum, Sinclair)

There is an FPRAS to evaluate $M_G(\lambda)$ for all G and $\lambda \in [0, \infty)$.

General result

Definition

Let $p = p_G$ be a graph polynomial, i.e.

$$p_G(z)=\sum_k a_k(G)z^k.$$

Call *p* a bounded induced graph counting polynomial (BIGCP)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

•
$$p_{G_1 \cup G_2} = p_{G_1} \cdot p_{G_2}$$

•
$$a_k(G) = \sum_{|H|=O(k)} s_{H,k} \cdot \operatorname{ind}(H,G)$$

• $s_{H,k}$ can be computed in $\exp(O(k))$ -time

c.f. independence polynomial

General result

Definition

Let $p = p_G$ be a graph polynomial, i.e.

$$p_G(z) = \sum_k a_k(G) z^k.$$

Call p a bounded induced graph counting polynomial (BIGCP)

•
$$p_{G_1 \cup G_2} = p_{G_1} \cdot p_{G_2}$$

•
$$a_k(G) = \sum_{|H|=O(k)} s_{H,k} \cdot \operatorname{ind}(H,G)$$

• $s_{H,k}$ can be computed in $\exp(O(k))$ -time

c.f. independence polynomial

Theorem (Patel, Regts)

Let p be a BIGCP with $p_G(z) \neq 0$ for $|z| \leq K = K(\Delta)$.

 \exists FPTAS to compute $p_G(z)$ for $|z| \leq K$ and $\Delta(G) \leq \Delta$.

ヘロン 人間 とくほ とくほ とう

Chromatic polynomial

For a graph G = (V, E)

 $\chi_{G}(q) = #$ proper q-colourings of G;

9 (9-1/ (9-2) = X triangle (9)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Chromatic polynomial

For a graph G = (V, E)

 $\chi_{G}(q) = #$ proper q-colourings of G;

hence $\chi_{G_1\cup G_2}(q) = \chi_{G_1}(q) \cdot \chi_{G_2}(q)$

For a graph G = (V, E)

 $\chi_{G}(q) = #$ proper q-colourings of G;

hence $\chi_{G_1 \cup G_2}(q) = \chi_{G_1}(q) \cdot \chi_{G_2}(q)$ Examples

Random cluster model formulation

$$\chi_G(q) = \sum_{A\subseteq E} (-1)^{|A|} q^{k(A)} =: \sum_i a_i(G) q^i,$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

where

•
$$a_n = 1$$

• $a_{n-1} = (-1)ind(e, G)$
• $a_{n-2} = ind(P_3, G) - ind(K_3, G) + ind(2K_2, G)$ etc

For a graph G = (V, E)

 $\chi_{G}(q) = #$ proper q-colourings of G;

hence $\chi_{G_1 \cup G_2}(q) = \chi_{G_1}(q) \cdot \chi_{G_2}(q)$ Examples

Random cluster model formulation

$$\chi_G(q) = \sum_{A\subseteq E} (-1)^{|A|} q^{k(A)} =: \sum_i a_i(G) q^i,$$

where

•
$$a_{n-1} = (-1)$$
ind (e, G)
• $a_{n-2} =$ ind $(P_3, G) -$ ind $(K_3, G) +$ ind $(2K_2, G)$ etc

Hence
$$z^n \chi_G(z^{-1})$$
 is a BIGCP

The polynomial $z^n \chi_G(z^{-1})$ is a BIGCP

Theorem (Jackson, Procacci and Sokal)

 $\chi_G(z) \neq 0$ whenever $\Delta(G) \leq \Delta$ and $|z| \geq K(\Delta) = 6.91\Delta$.

The polynomial $z^n \chi_G(z^{-1})$ is a BIGCP

Theorem (Jackson, Procacci and Sokal)

 $\chi_G(z) \neq 0$ whenever $\Delta(G) \leq \Delta$ and $|z| \geq K(\Delta) = 6.91\Delta$.

Using our method, this implies

There is an FPTAS to evaluate $\chi_G(z)$ for graphs of maximum degree Δ whenever $|z| \ge K(\Delta) = 6.91\Delta$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The polynomial $z^n \chi_G(z^{-1})$ is a BIGCP

Theorem (Jackson, Procacci and Sokal)

 $\chi_{G}(z) \neq 0$ whenever $\Delta(G) \leq \Delta$ and $|z| \geq K(\Delta) = 6.91\Delta$.

Using our method, this implies

There is an FPTAS to evaluate $\chi_G(z)$ for graphs of maximum degree Δ whenever $|z| \ge K(\Delta) = 6.91\Delta$.

- ロ > ・ 個 > ・ 目 > ・ 目 - ・ の へ ()・

Many results

- FPTAS for $q \ge 2\Delta(G)$ (Liu-Srivastava-Sinclair)
- FPRAS for $q \ge \frac{11}{6}\Delta(G)$ (Vigoda) $q \ge (\frac{11}{6} - \varepsilon)\Delta(G)$ (CDMPP)
- No FPTAS for $q < \Delta(G)$ unless P = NP
- FP(RT)AS conjectured for q > Δ(G)

The polynomial $z^n \chi_G(z^{-1})$ is a BIGCP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conjecture (Sokal)

 $\chi_G(z) \neq 0$ if $\Re(z) > \Delta(G)$.

The polynomial $z^n \chi_G(z^{-1})$ is a BIGCP

Conjecture (Sokal)

 $\chi_G(z) \neq 0$ if $\Re(z) > \Delta(G)$.

So our method implies

Conjecture (Folklore)

There is an FPTAS for $\chi_G(q)$ whenever $q > \Delta(G)$.

 Not quite immediate, but not too hard: requires some conformal mapping

(日) (日) (日) (日) (日) (日) (日)