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Is there an efficient algorithm to approximately count
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Breakdown
@ Part I, Il - Efficient approximation algorithms
@ Part lll, IV - Hardness

Connection to statistical physics
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Hard-core model
@ )\ is a temperature parameter
@ For S C V independent, we have P(S) o \I°!
@ P(S) = \ISl/Z5()\) where

ZeW)= Y, AF

SCV independent

is the partition function of the hard-core model (a.k.a the
independence polynomial)



G = (V,E)agraph

Independence polynomial

Zg(\) = > A= "aak,

SCV independent k>0

where a, = # of independent sets of size k (in G).




G = (V,E)agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G
@ Z,(1)/Zs(1) = average size of independent set



G = (V,E) agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G
@ Z,(1)/Zs(1) = average size of independent set

@ Zs()) for large X determines size of largest independent
set



G = (V,E) agraph

Independence polynomial

Zg(\) = > AT =% " gk,

SCV independent k>0

where a, = # of independent sets of size k (in G).

@ Z;(1) = #independent sets in G

@ Z(1)/Zs(1) = average size of independent set

@ Zs()) for large X determines size of largest independent
set

Q: Is there efficient algorithm to approximately evaluate Zg(\)
at different \?



G=(V,E)agraph @ | T7¢A + 27
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SCV independent k>0

where a, = # of independent sets of size k (in G).
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@ Zs()) for large X determines size of largest independent
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at different \?
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Graph polynomials / partition functions

We will look at
@ Independence polynomial (hard-core model)
@ Matching polynomial (monomer-dimer model)
@ Chromatic polynomial
@ Partition function of Ising model

Perspectives
@ Enumeration - generating functions for counting objects in
graphs
@ Statistical physics - partition functions

Questions
@ Where are the roots of the graph polynomials?

@ What is the computational complexity of evaluating the
graph polynomials (approximately)?
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Fully Polynomial Time Approximation Scheme (FPTAS)

Suppose f is a graph parameter,
(e.g. f(G) = Z5(1) = # independent sets in G = (V, E)).

An FPTAS is an algorithm that, given input Gand 0 < e < 1,
@ estimates f(G) within a multiplicative factor 1 + ¢
@ in time polynomial in n = |V| and ¢~ .

An FPRAS is a randomised algorithm that, given input G and
O<ex<,

@ estimates f(G) within a multiplicative factor 1 + ¢
@ in time polynomial in n = |V| and e~
@ with probability > 2.
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Independence Polynomial

Let G=(V, E)
Zew = Y Ae

SCV independent
A(G) < A

@ 0 <\ < )\ = JFPTAS for Zg(\) (Weitz)

@ \> )¢ — AFPTAS for Zg(\) unless P = NP
5 (Sly and Sun)
(Galanis, Stefankovi¢, Vigoda)
where
(A —1)A1

Ao = Ao(D) = “Bo2p



Three methods for approximate counting

Markov chain Monte Carlo (Broder, Jerrum, Sinclair)
@ randomised algorithms
@ generally faster algorithms

Correlation decay (Weitz)
@ deterministic algorithm

Taylor polynomial interpolation (Barvinok)
@ deterministic
@ complex evaluations
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Taylor Polynomial Interpolation Method (Barvinok)
@ Let p = pg be a (graph) polynomial of degree < n.
@ Assume p(z) # 0 for all |z| < R for some R > 0. (z € C)

@ Letf(z) =Inp(z) for |z] < R and let
m . Zk
Tn(2) = Y f9(0) 7.
k=0
Then for m > ClIn(n/<) we have that | T (2) — f(z)| < e
ie. Tm(z)=f(z)+t with |t| < ¢
— e'm(®) = ¢!ef@ ~ (1 + )p(2).

Recipe for FPTAS
@ |dentify zero-free region of p containing z (inc. non-disks).
@ Efficiently compute f(9)(0) for k = 0,..., O(Inn/e).
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If A(G) < A, we can compute
ax = ax(G) = #indep sets of size k in G

in time poly(n)cX, where ¢ = ¢(A) is a constant.

Lemma implies the following

Theorem (Patel, Regts)

Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

This holds for more general regions than just the disk.
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Lemma (Patel, Regts)

If A(G) < A, we can compute
ax = ak(G) = ind(ok, G)

in time ckn®"), where ¢ = c(A).

Write ind(H, G) := # induced copies of Hin G

Three observations

Can compute ind(H, G) in time ckn®") where

|H| = k, H connected and |G| = n, A(G) < A.

Suppose 7(G) = >_ py ind(H, G)
and T(G1 UGZ):T(G1)+T(GQ) VGy, Go

—> uy = 0 for all disconnected H. (Csikvari and Frenkel)
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| \

In time ¢¥n®") can compute
@ all non-zero ind(H, G) (for connected H, |H| < k)
@ all ¢y for which ind(H, G) non-zero
@ py,...,px hence ay, ..., ax n
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Suppose Zg(z) # 0 for all |z| < C and A(G) < A.
Then 3 FPTAS to compute Zg(z) for |z| < C and A(G) < A.

_1\A-1 _1\A-1
A (A) = B Ao(A) = % (Note A* < Ac)

We have Zg(z) # 0 for all z € D and A(G) < A where

(1) D=A{z : |z| < X} (Dobushin, Shearer)
(2) D = open region containing [0, \¢) (Peters, Regts)

(38) D={z:R(2) >0, |z| < Ztan (ﬁ)} (Csikvéri, Bencs)

Implies the following:

There is an FPTAS for computing Zg(z) if z € D and A(G) < A-J

@ Recover result of Weitz and more



Zero-free regions for Zg where A(G) < d (d =10)

@ Green region (Shearer, Dobrushin)
@ Brown/purple regions (Peters, Regts)
@ Red region (Csikvari, Bencs)

Explain non-disks



Zeros of Zg and hardness (for A(G) < d)

@ Zeros of Z7, , are dense outside blue curve
(de Boer, Buys, Guerini Peters, Regts)

@ NP-hard to approximate Zg(z) outside blue curve
(Bezakova, Galanis, Goldberg, Stefankovic)
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Summary

Idea: Approximate f(z) = In(Zg(z)) by In(n) term Taylor approx
1) Need to identify zero-free region
2) Compute f9)(0) in time poly(n)ck




Computing approximation for Zg(z)

Summary

Idea: Approximate f(z) = In(Zg(z)) by In(n) term Taylor approx
1) Need to identify zero-free region
2) Compute f9)(0) in time poly(n)ck

For step 2), note that

@ Compute f(K)(0) +> compute kth inverse power sum py
o
P(G) = >  cu-ind(H,G)

[H|<k
H connected

@ “Easy” to compute ind(H, G) when H connected
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Mg()) = > AME=3 " my Ak

matchings M of G k>0

where my = # of matchings of size k in G.

There is an FPTAS to evaluate Mg(z) with A(G) < A and
zeC\ (—o0,—A*(2A - 1)). J

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate Mg(\) whenever A(G) < A and
A € [0, 00).




Matching polynomial

Mg()) = > AME=3 " my Ak

matchings M of G k>0
where my = # of matchings of size k in G.

There is an FPTAS to evaluate Mg(z) with A(G) < A and
zeC\ (—o0,—A*(2A - 1)). J

Using correlation decay

Theorem (Bayati, Gamarnik, Katz, Nair, and Tetali)

There is an FPTAS to evaluate Mg(\) whenever A(G) < A and
A € [0, 00).

Using MCMC

Theorem (Jerrum, Sinclair)
There is an FPRAS to evaluate Mg(\) for all G and \ € [0, ).




General result

[ Definiton

Let p = pg be a graph polynomial, i.e.
pa(z) = > a(G)Z¥.
k

iFall p a bounded induced graph counting polynomial (BIGCP)

° pG1UGg = pG1 pG2
® a(G) = X |H—o(k) SH.k - ind(H, G)
@ sy x can be computed in exp(O(k))-time

c.f. independence polynomial
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Theorem (Patel, Regts)

Let p be a BIGCP with pg(z) # 0 for |z] < K = K(A).
3 FPTAS to compute pg(z) for |z| < K and A(G) < A.
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Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP )

Theorem (Jackson, Procacci and Sokal)
xG(z) # 0 whenever A(G) < A and |z| > K(A) = 6.91A.
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The polynomial z"xg(z~") is a BIGCP )

Theorem (Jackson, Procacci and Sokal)
xG(z) # 0 whenever A(G) < A and |z| > K(A) = 6.91A.

Using our method, this implies

There is an FPTAS to evaluate xg(z) for graphs of maximum
degree A whenever |z| > K(A) = 6.91A. ’

Many results
@ FPTAS for g > 2A(G) (Liu-Srivastava-Sinclair)

G) (
@ FPRAS for q> 11A(G) (Vigoda)
( —¢)A(G) (CDMPP)

@ No FPTAS for g < A(G) unless P = NP
@ FP(RT)AS conjectured for g > A(G)



Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP |

Conjecture (Sokal)
xg(2) # 0 ifR(z) > A(G).
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Chromatic polynomial

The polynomial z"xg(z~") is a BIGCP |

Conjecture (Sokal)
xg(2) #0ifR(z) > A(G).

So our method implies

Conjecture (Folklore)
There is an FPTAS for xg(q) whenever q > A(G).

o Netquiteimmediate but-nettoo-hard:requiresseme
confermal-mapping



