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Beyond extremal instances

So far, we have seen partial rejection sampling for extremal instances.

We cannot expect many sampling problems to correspond to

extremal instances.

The way we can extend the range of partial rejection sampling is

suggested by the following example.
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Sampling independent sets (Hardcore model)

1. Randomize each vertex (in/out).
Consider the connected components
induced by the in-vertices.

2. Find a connected component of size at
least 2 (outlined in red).

3. Add the boundary (outlined in purple).

4. Resample variables in this set.
Check independence.

When the algorithm stops, it yields a uniform independent set.
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Return to the PRS framework

We have variables X1, . . . , Xn corresponding to vertices of G.

The most direct encoding as a formula is

�G(X) =
^

{i,j}2E(G)

(¬Xi _ ¬Xj),

but we have seen that this doesn’t work: � is not extremal.

Let S ✓ V(G) be any subset of vertices that induces a

connected subgraph of G. Let @S be the boundary of S (vertices

that are not in S but that are adjacent to a vertex in S). We say

that S is a cluster with respect to X i↵

Xi = 1 for all i 2 S and Xi = 0 for all i 2 @S.

The formula �S(X) expresses the condition that S is a cluster.
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A modified formula

Consider the formula � =
V

S�S, where S ranges over all vertex

sets described above.

�(X) expresses that X encodes an independent set.

The formula � is not extremal either, but it is su�ciently close.

We indicate what ‘su�ciently close’ means in the context of

independent sets. . .
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A relaxation of ‘extremal’ in pictures
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Correctness and e�ciency

If a formula � meets the relaxed definition just sketched, then

PRS produces a satisfying assignment with the desired

distribution.

It is no longer true that clauses can be resampled in any order.

However, any choice rule that is based purely on which clauses

are false will work. (Peeking at the variables will spoil the output

distribution.)

Unfortunately, there is no longer a neat expression for the

expected number of resamplings.

However, assuming a certain commutativity condition (to be

sketched), a significant body of work on ‘Lopsided Lovász Local

Lemma’ can be brought to bear.
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Commutativity and run time analysis

The resulting time bounds are optimal (linear in n, the number

of variables).

However the range of validity can be a little disappointing. E.g.,

Markov chain simulation can sample independent sets with

substantially higher density.
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Hard discs model

Poisson point process of rate �r = �/(⇡r2) in a unit square,

conditioned on no pair of points being closer than 2r.

Figure: A typical configuration with disks of radius r.
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Partial rejection sampling applied to hard disks

Initial configuration.
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Partial rejection sampling applied to hard disks

Compute the resampling set (orange).
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Compute the resampling set.
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Partial rejection sampling applied to hard disks

Rerandomise within the resampling set.
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Partial rejection sampling applied to hard disks

Updated configuration.
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Partial rejection sampling applied to hard disks

Compute the resampling set.
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Partial rejection sampling applied to hard disks

Rerandomise within the resampling set.
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Partial rejection sampling applied to hard disks

Final configuration.
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Analysis

Theorem (Guo and Jerrum)

The above procedure is correct, and runs in O( (r-1)) iterations,
provided � < 0.21027.

In d dimensions, the natural scaling is �rd = �/(vdrd) where vd is

the volume of a ball of radius 1 in Rd
.

Theorem (Guo and Jerrum)

For the hard spheres model in d dimensions, the above procedure
runs in O( (r-1)) iterations, provided � < 2

-d- 1
2 .
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New topic: Lazy Depth-First Sampling (LDFS)

Reference: Anand and Jerrum, Perfect sampling in infinite spin

systems via strong spatial mixing, arXiv:2106.15992.

Suppose G is a graph. Consider some spin model on G, whose

configurations are assignments � : V(G) ! Q, where Q is a finite set

of spins. Each edge contributes a weight that is a function of the

spins at its endpoints. The weight of a configuration is the product

of contributions from all the edges.

Example: in the case of independent sets, Q = {0, 1} and the weight

contributed by edge ij is 0 if �(i) = �(j) = 1, and 1 otherwise.
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The goal

Suppose v 2 V(G) and (�,�� ) is a context, composed of a set

� ✓ V(G) \ {v} and a partial assignment �� : � ! Q. We wish to

design a perfect sampler that will return a spin s 2 Q from the

marginal distribution on v, conditioned on vertices in � having spins

pinned to �� .
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Towards a sampling scheme (for independent sets)

(v, (�,�� ))

for all u ⇠ v do
if u /2 � then
s := (u, (�,�� ))

� := � [ {u}; �� := �� [ {(u, s)}

end if
end for
if �� (u) = 1 for some u ⇠ v then
return 0

else
with probability �/(�+ 1) return 1 otherwise 0

end if
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Lazy Depth-First Sampler (LDFS)

Now observe that if ↵ 6 1/(�+ 1) then the output is necessarily

0. . . so we don’t need to make the recursive calls.

Suppose we apply to a graph of maximum degree

�. With probability 1/(�+ 1) we make no recursive calls. With

probability �/(�+ 1) we make at most � recursive calls. So the

expected number of recursive calls is bounded by a branching

process. The mean number of o↵spring at a node of the tree

��/(�+ 1). So the expected number of recursive calls is

bounded if ��/(�+ 1) < 1, i.e., � < 1/(�- 1).

This analysis is crude and can easily be improved. For example,

if some recursive call generates a 1 we can omit the succeeding

recursive calls.
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Radius r > 1 Lazy Depth-First Sampler

The same approach can be applied to many other sampling

problems, but there are limits. For example, it does not apply to

q-colouring, as any putative colour for v is eliminated by some

colouring of its neighbours.

However, we can generalise the sampling scheme just considered

to radius r. In this, we recursively call the procedure on vertices

at distance r. What we have seen with independent sets is the

special case r = 1.

Even at r = 2, the approach has something to say about

sampling q-colourings, provided q is su�ciently large in relation

to �.
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Sampling on infinite lattices

Suppose we want to sample a uniform random 6-colouring of an

infinite square lattice (or, say, a large L⇥ L square region, to avoid

discussing what we mean by a random colouring of an infinite graph).
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Zone of indecision

When r is large, so the influence of the vertices at radius r is

small.

Suppose that, when r = 6, the marginal probability at the origin

v is such that (v is red) > 0.165 and similarly for the other

colours.

The ‘zone of indecision’ then has length 1- 6⇥ 0.165 = 0.01.

There are just 48 vertices in the boundary, so the branching

process is subcritical (48⇥ 0.01 < 1).

We thus would have a sampling algorithm that requires expected

constant time per site.
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Weak spatial mixing

In fact, in the case of 6-colourings of a square lattice, it is the
case that the influence of vertices at distance r declines

exponentially fast with r. So the zone of indecision contracts

exponentially fast with r.

At the same time, the number of vertices at distance r is 8r.

So the branching process will become subcritical at some value

of r, and we obtain a constant-time per site sampling algorithm,

that works even for infinite square lattices.

But hold on. . . .
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Strong spatial mixing

As the sampling algorithm progresses, the environment of frozen

colours grows.

So to get things to work, we need exponential decay of

correlations, even when some vertices are ‘pinned’ to certain

colours. This is ‘strong spatial mixing’ and is a more elusive

concept than weak spatial mixing.

Strong spatial mixing holds for 7-colourings of the square lattice

(e.g., Goldberg, Martin and Paterson), but at the time of writing

this slide I don’t know the status of 6-colourings.

It is possible to get away with weak spatial mixing in this and

some other similar situations (work in progress).
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The ferromagnetic Ising model

An interesting example is the ferromagnetic Ising model.

Ding, Song and Sun recently (2021) settled a long-standing

conjecture in the a�rmative: in a strong sense, weak spatial mixing

implies strong spatial mixing for the ferromagnetic Ising model. (The

ferromagnetic Ising model may be essentially unique in having this

strong property.)

As a consequence we can sample Ising configurations on the cubic

lattice Zd
whenever weak spatial mixing holds, i.e., whenever the

Ising measure is defined on those lattices.
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Work in progress

When can we weaken the constraint of strong spatial mixing?

Do we have to pay (in terms of range of validity of the sampling

algorithm) for perfect sampling?

Do we have to pay (in terms of range of validity of the sampling

algorithm) for linear time (constant time per site) sampling?
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