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Motivation

Problem: produce a realisation of a random variable with a specified
probability distribution.

Example: Given an undirected graph G, sample, uniformly at
random, a spanning tree in G.

The sample must exactly match the desired probability distribution.
This rules out Markov chain simulation, a common approach to
sampling.

Why study perfect sampling?

Theoretical appeal.

Perfect samplers are ‘self clocking’.
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The scope of these tutorials
Perfect sampling is too wide a topic to cover in generality. See,
for example,

Mark Huber, Perfect simulation. Monographs on Statistics and
Applied Probability, 148. CRC Press, 2016.

We concentrate on samplers that can, in principle, work in time
linear in the input size (or in constant time for each ‘piece’ of
the output).

This rules out Coupling from the Past (CFTP), perhaps the best
known approach to perfect sampling.

It also opens up the possibility of sampling (portions of) infinite
objects.

Perhaps the first perfect sampler along these lines was Fill and
Huber’s ‘Randomness Recycler’.

Mark Jerrum (Queen Mary) Perfect sampling Dortmund, June 2022 3 / 37



The setting for this tutorial

Suppose � = C1 ^ C2 ^ · · ·^ Cm is a formula in variables
X1, . . . , Xn. (The variables may be Boolean, and the clauses might
be disjunctions of literals, but this is not essential.)

There is an underlying product distribution on the variables
X = (X1, . . . , Xn). (Perhaps, the values result from independent
tosses of a fair coin.)

We wish to sample from the conditional distribution of X given �(X).

Reference: Fundamentals of Partial Rejection Sampling,
arXiv:2106.07744
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Example: independent sets
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Example: Sink-free orientations
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Exploit connection with the Lovász Local Lemma

Recall � = C1 ^ C2 ^ · · ·^ Cm. Assume that

each clause shares variables with at most d other clauses;

under a uniform random assignment to the variables X1, . . . , Xn

each clause is false with probability at most p.

Then the Lovász Local Lemma (LLL) asserts that, if 4pd 6 1, then
� is true with non-zero probability.

The LLL guarantees only an exponentially small probability, so simple
rejection sampling will not, in general, find a satisfying assignment to
� e�ciently.
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Moser-Tardos resampling algorithm

A remarkable breakthrough is due to Moser and Tardos (2010), who
found an algorithmically e�cient version of LLL:

1 Initialize variables X1, . . . , Xn independently at random.

2 While there exists an unsatisfied clause:
pick one and resample all its variables.

Moser and Tardos showed that this algorithm is e�cient under the
same condition as LLL.

Question
Instead of simply finding a satisfying assignment, can we generate
one uniformly at random?
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Searching versus sampling: independent sets

Consider the problem of sampling independent sets in graph.
Variables correspond to vertices. Clauses correspond to edges. A
typical clause has the form ¬Xi _ ¬Xj.

The Moser-Tardos algorithm selects an edge with both endpoints in
the current independent set and re-randomises the variables
corresponding to the two endpoints.

For a path of length two (i.e., with three vertices) the empty
independent set is generated with probability 2

9
and not 1

5
as required.

In fact, any e�cient algorithm ought to fail, as sampling independent
sets uniformly at random is a computationally hard problem
(NP-hard).
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Searching versus sampling: sink-free orientations

Lemma (Cohn, Pemantle and Propp, 2002)
Moser-Tardos-style resampling generates a uniform sink-free

orientation in expected time O(|V | |E|).
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What distinguishes sink-free orientations from
independent sets?

Definition
We call an instance (formula) � = C1 ^ · · ·^ Cm extremal if every
pair of distinct clauses Ci and Cj are either independent (Ci and Cj

have no variables in common) or exhaustive (Ci and Cj cannot both
be false).

The formula encoding sink-free orientations is extremal.

The formula encoding independent sets is not extremal.
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Check this!
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Extremal instances and perfect sampling

Extremal instances � (in some precise sense) minimize the
probability that the formula is true [Shearer 85].

Moser-Tardos is slowest on extremal instances.

However, slowest for searching is best for sampling!

Theorem (Guo, Jerrum and Liu, 2017)
For extremal instances, the output of Moser-Tardos is uniform. More

precisely, if � is satisfiable, then the output of the resampling

algorithm is from the product distribution conditioned on �(X).

We refer to this approach as Partial Rejection Sampling (PRS).
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Resampling tables and transcripts (by example)

A formula (extremal)

�(X) = (X1_X2)^ (¬X1_X3_¬X4)^ (¬X2_¬X3_X5)^ (X4_¬X5)

and a possible resampling table and transcript

...
...

1
...

... 1
...

1 0 1 1 1

0 0 0 0 1

0 1 1 1 0

1 0 0 0 1

X1 X2 X3 X4 X5

0 1

1 0 1

0 0

1 1 0

0 0 0 1

1 0 1

t = 7

t = 6

t = 4, 5

t = 3

t = 2

t = 1

t = 0

X1 X2 X3 X4 X5

1 0 1 1 1
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The order of resampling does not matter

Lemma

Fix a resampling table. Suppose that for some sequence of

non-deterministic choices, PRS run on � terminates with a certain

transcript. Then for any other sequence of choices, the algorithm will

terminate with the same transcript.

Proof by picture. A rigorous proof uses a version of Newman’s
Lemma. C.f. the Abelian Sandpile model.
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Uniqueness of the transcript
Recall the formula

�(X) = (X1_X2)^ (¬X1_X3_¬X4)^ (¬X2_¬X3_X5)^ (X4_¬X5)

and a possible resampling table

...
...

1
...

... 1
...

1 0 1 1 1

0 0 0 0 1

0 1 1 1 0

1 0 0 0 1

X1 X2 X3 X4 X5
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Invariance under change of solution

Changing the content of the ‘final frontier’ of the resampling table
does not change the interior of the transcript.

0 1

1 0 1

0 0

1 1 0

0 0 0 1

1 0 1

t = 7

t = 6

t = 4, 5

t = 3

t = 2

t = 1

t = 0

X1 X2 X3 X4 X5

1 0 1 1 1

0 1

1 0 1

0 0

1 1 0

0 0 0 1

1 0 1

t = 7

t = 6

t = 4, 5

t = 3

t = 2

t = 1

t = 0

X1 X2 X3 X4 X5

1 0 1 0 0
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Correctness of PRS

Theorem

Suppose � is a satisfiable extremal instance. Then PRS on input �

terminates with probability 1. On termination, X is a realisation of a

random variable from the desired distribution.

Proof.
The number of resamplings is dominated by a geometric random
variable.

Regard two transcripts as equivalent i↵ they agree except on the
satisfying assignment in the final frontier. Each satisfying
assignment is possible in this location. So conditioned on the
equivalence class, each satisfying assignment is equally likely.
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Extremal instances: running time

Theorem
For extremal instances, the expected number of (sequential)

resampling steps is equal to

(Exactly one clause in � is false)

(� is true)
.

The probabilities are with respect to the (unconditioned) product

distribution on variables.

The upper bound is due to Kolipaka and Szegedy (2011).

It is a simple statement, but there is apparently no simple proof.
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A generating function for transcripts
Recall the formula we have been working with:

�(X) = (X1_X2)^ (¬X1_X3_¬X4)^ (¬X2_¬X3_X5)^ (X4_¬X5)

Introduce variables z1, z2, z3, z4

corresponding to the four clauses
C1, C2, C3, C4. Each transcript
can be encoded as a monomial,
in this case z

2
1z

2
2z3z

2
4.

0 1

1 0 1

0 0

1 1 0

0 0 0 1

1 0 1

t = 7

t = 6

t = 4, 5

t = 3

t = 2

t = 1

t = 0

X1 X2 X3 X4 X5

1 0 1 0 0

Summing these monomials over all transcripts we obtain the
generating function T(z1, z2, z3, z4) for transcripts.
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The probability of a transcript

The probability of a particular transcript arising is easy to compute!

Denote by pk the probability of clause Ck being true in the
(unconditioned) product distribution. Note that the probability of a
transcript with monomial ze1

1 z
e2
2 z

e3
3 z

e4
4 arising is proportional to

p
e1
1 p

e2
2 p

e3
3 p

e4
4 .
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Expected number of resamplings

By di↵erentiating the generating function T(z1, z2, z3, z4) with
respect to zk and evaluating it at the point
(Z1, Z2, z3, z4) = (p1, p2, p3, p4), we obtain a new sum over
transcripts, this time weighted by the number of resamplings of
the variables in clause Ck.

This immediately yields an expression for the expected number
of resamplings of clause Ck in a run of PRS.

Finally, by inclusion-exclusion, we can relate this expression to
the quantities (Exactly one clause in � is false) and

(� is true) in the statement of the theorem.
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An example: Sink-free orientations

Assume the graph G does have a sink-free orientation.
Applying PRS we obtain the following:

while the current orientation of G has at least one sink do
Choose any sink vertex v

Resample the orientations of the edges incident at v
end while

If G has a sink-free orientation, then the above loop terminates
with probability 1. (Why?)

Since the instance is extremal, the output distribution is uniform
over all sink-free orientations.
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Running time

The expected number of resamplings is given by

(There is exactly one sink in O)

(O is sink-free)
.

where O is a uniform random orientation of G. Since the orientation
of each edge is unbiased, this quotient is equal to

The number of orientations with exactly one sink

The number of sink-free orientations
.

In order to bound the latter ratio, we show how to take an orientation
with exactly one sink, and ‘repair’ it to obtain a sink-free orientation.
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Running time (continued)

To obtain a good bound, we require the repair to be minimal.

Let O be any ‘reference’ sink-free orientation.

Choose a function f : V ! V that is consistent with O, in the
sense that f(u) = v implies edge uv is directed from u to v

in O.

The repair is e↵ected as in the following slide.
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Repairing an orientation with a single sink
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Finishing up

We can undo the repair if we know the start an end vertices of
the path of reversals.

Thus, each sink-free orientation corresponds to at most |V(G)|2

orientations with exactly one sink.

The expected number of resamplings is bounded by |V(G)|2.

The analysis can be extended to the expected number of edge
reversals, which is bounded by 2|V(G)||E(G)|. Guo and He
improved this bound to |V(G)|2 + |E(G)|.
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Another example: root connected subgraphs

Let G be a directed graph with a distinguished root r.

A (spanning) subgraph of G in which there is a path from every
vertex of G to the root r is called root connected.

Our goal is to sample a root-connected subgraph uniformly at
random from G.

Edge weights can be accommodated, but we shall consider the
unweighted case for simplicity.

Motivation: equivalent to the problem of sampling connected
spanning subgraphs of an undirected graph (all-terminal network
reliability).
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Clusters

Definition

In a directed graph (V,A) with root r, a subset C ✓ V of vertices is
called a cluster if C 6= ;, r /2 C and there is no arc u ! v 2 A such
that u 2 C and v /2 C.
We say that C is a minimal cluster if C is a cluster and for any
proper subset C 0 ⇢ C, C 0 is not a cluster.

Some observations:

Minimal clusters are disjoint.

Minimal clusters are strongly connected.

G = (V,A) is root connected i↵ it contains no clusters.
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Cluster popping (Gorodezky and Pak)

The algorithm samples a uniform root-connected subgraph of a
directed graph G.

The basic approach is simple: keep ‘popping’ minimal clusters until
no clusters exist.

Let S be a subset of arcs obtained by choosing each arc e 2 A

with probability 1
2
independently.

while there is a cluster in (V, S) do
Let C1, . . . , Ck be all minimal clusters in (V, S), and
C =

Sk
i=1 Ci.

Re-randomize all arcs with start vertices in C to get a new S.
end while
return S
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A sample run

The instance.

r
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A sample run

A random starting configuration (in red).

r
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A sample run

The unique minimal cluster and its associated edges (dashed).

r
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A sample run

Re-randomise the cluster.

r
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A sample run

The unique minimal cluster and its associated edges (dashed).

r
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A sample run

Re-randomise the cluster.

r
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A sample run

The unique minimal cluster and its associated edges (dashed).

r
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A sample run

Re-randomise the cluster.

r
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A sample run

The two minimal clusters and their associated edges (dashed).

r
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A sample run

Re-randomise the clusters (say left first then centre). There are no
remaining clusters, so halt.

r
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Correctness

Cluster popping fits into the PRS framework.

Key property: for every pair of subsets U,U
0 ✓ V \ {r} either

U \U
0 = ; (in which case the events that U and U

0 are
minimal clusters are probabilistically independent), or

U and U
0 cannot both be minimal clusters.

So the extremal property holds here and guarantees correctness of
the partial rejection sampling algorithm: while there exists a minimal
cluster U, re-randomise the variables associated with U.

Note that this is exactly what Gorodezky and Pak’s cluster-popping
algorithm does!
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Running time: bidirected graphs

In general, the expected number of cluster poppings is exponential.

An interesting special case is that of bi-directed graphs, in which arcs
occur in antiparallel pairs.

Gorodezky and Pak conjectured that the running time of cluster
popping in bidirected graphs is polynomial in n, the number of
vertices of G.

As we saw, the expected number of (sequential) resampling steps is
equal to

(Exactly one clause in � is false)

(� is true)
,

where there is a clause �U in � for each U ✓ V \ {r}. The clause
�U asserts that U is not a minimal cluster.
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Analysis for cluster popping in particular

In this instance,

(Exactly one clause in � is false)

(� is true)

is equal to

Number of subgraphs with exactly one minimal cluster

Number of root-connected subgraphs
.

As before, we can bound this ratio by showing how to repair a
subgraph with exactly one minimal cluster, to obtain a root-connected
subgraph. Repairing is a little more complicated this time.
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Repairing a minimal cluster
Circles are strongly connected components. R is the set of vertices

from which the root r is reachable.

R

G = (V,A)

r
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Repairing a minimal cluster

Light blue shading indicates the unique minimal cluster.

R

G = (V,A)

r
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Repairing a minimal cluster

There must exist an edge (u, u 0) entering R.

R

G = (V,A)

r

u

u
0
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Repairing a minimal cluster

Light blue shading indicates vertices reachable from u.

R

G = (V,A)

r

u

u
0
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Repairing a minimal cluster

Flip direction of edges between shaded connected components and
add the edge (u, u 0).

R

G = (V,A)

r

u

u
0
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Repairing a minimal cluster

No minimal clusters ⌘ root-connected graph.

R

G = (V,A)

r

u

u
0
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Conclusion
Theorem
There is a perfect sampler for root-connected subgraphs of a

bidirected graph with expected running time O(|E|2|V |). (The

number of resampling steps is O(|E||V |).)

Corollary
There is an FPRAS for approximating the number of connected

spanning subgraphs of an undirected graph.

As edge weights can be incorporated, we have an e�cient
approximation algorithm for (undirected) all-terminal reliability.

In a subsequent breakthrough, Anari, Liu, Oveis Gharan and Vinzant
showed how to solve a more general sampling problem by Markov
chain simulation.
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A list of applications of PRS (in the extremal case)

Sink-free orientations.

Spanning trees.

Root-connected subgraphs of a bidirected graph (equivalent to
spanning connected subgraphs of an undirected graph.

Bases of a bicircular matroid.

Where it is applicable, PRS works well. But the range of applications
seems limited. Are there any further applications out there?
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