Sampling symmetric Gibbs distributions on the sparse random graph and hypergraph

Charis Efthymiou University of Warwick

Algorithms, Dynamics, and Information Flow in Networks

Algorithm Dynamics Information Flow June, 2022

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• spin configurations on the vertices of a graph

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• spin configurations on the vertices of a graph

- graph G=(V,E) and set of spins ${\cal S}$
- configuration space \mathcal{S}^V

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins S
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight (σ)

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins S
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight (σ)
- configuration $\sigma \in \mathcal{S}^V$ is assigned probability measure

 $\mu(\sigma) \propto \texttt{weight}(\sigma)$

Potts model

Potts model

•
$$G = (V, E)$$
, $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

Potts model

- $G = (V, E), S = \{1, 2, \dots, q\} \text{ and } \beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

Remarks

• for q = 2 we have the Ising model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Potts model

- $G = (V, E), S = \{1, 2, \dots, q\} \text{ and } \beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

Remarks

- for q = 2 we have the Ising model
- for $\beta = -\infty$ we have the Colouring model

Potts model

- $G = (V, E), S = \{1, 2, \dots, q\} \text{ and } \beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $weight(\sigma) = exp(\beta \times \#monochromatic-edges)$

Remarks

- for q = 2 we have the Ising model
- for $\beta=-\infty$ we have the Colouring model
 - monochromatic edges are not allowed!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

Status of the problem ...

• worst-case the problem is *computationally hard*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently σ which is distributed "close" to μ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently σ which is distributed "close" to μ
 - approximate sampling

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently σ which is distributed "close" to μ
 - approximate sampling
- there are cases where even approximate sampling is hard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently $\pmb{\sigma}$ which is distributed "close" to μ
 - approximate sampling
- there are cases where even approximate sampling is hard
- the *range of parameters* of the problem in which we can get "good" approximations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The sparse random graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

• expected degree *d*, i.e. $m = \frac{dn}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Two levels of randomness

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

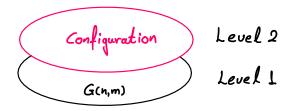
Two levels of randomness

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Two levels of randomness



・ロト・西ト・ヨト・ヨー うへぐ

• focus on approximate sampling

- focus on approximate sampling
- use concepts from physics for better algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- focus on approximate sampling
- use concepts from physics for better algorithms
- intuition from the Cavity Method

Popular approaches to sampling problem

Popular approaches to sampling problem

Markov Chain Monte Carlo method

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Markov Chain Monte Carlo method

• Glauber dynamics, Metropolis Process

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Markov Chain Monte Carlo method

- Glauber dynamics, Metropolis Process
- Message Passing Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Markov Chain Monte Carlo method

- Glauber dynamics, Metropolis Process
- Message Passing Algorithms
 - Belief Propagation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Markov Chain Monte Carlo method
 - Glauber dynamics, Metropolis Process
- Message Passing Algorithms
 - Belief Propagation
- Other approaches

- Markov Chain Monte Carlo method
 - Glauber dynamics, Metropolis Process
- Message Passing Algorithms
 - Belief Propagation
- Other approaches
 - Many of those you listen in here in the summer-school.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Markov Chain Monte Carlo method
 - Glauber dynamics, Metropolis Process
- Message Passing Algorithms
 - Belief Propagation
- Other approaches
 - Many of those you listen in here in the summer-school.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our approach here has nothing to do with all the above

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

The sampling algorithm

(ロ)、(型)、(E)、(E)、 E) の(()

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 according to the Gibbs distribution at G_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

 $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$
 $-G_0 \text{ is empty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

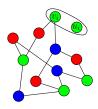
The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**
Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_{i-1} to generate **efficiently** σ_i



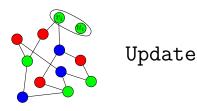
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

 $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$
 $-G_0 \text{ is empty}$



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**

Generate σ_0 according to the Gibbs distribution at ${\it G}_0$

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

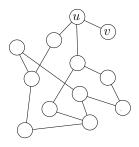
Output: σ_r

Example from the past

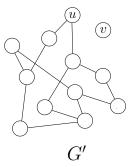
Example from the past

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example with the Colouring Model

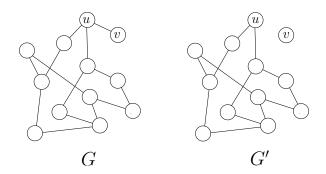


G



・ロト・「四ト・「田下・「田下・(日下

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



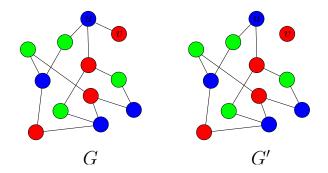
A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ



A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ



A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

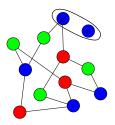
Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Update

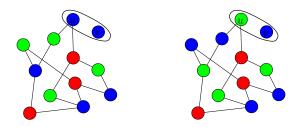
Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Update

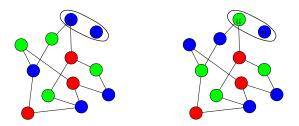
Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

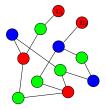
Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

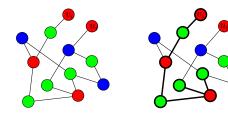


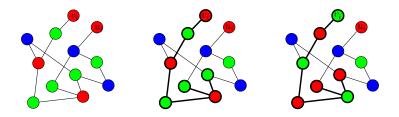
Be careful...

We can not change the colours of the vertices arbitrarily.



◆□▶ ◆□▶ ◆目▶ ◆目▶ ─ 目



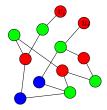


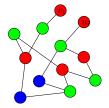
▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

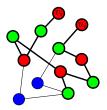
... why approximate sampling?

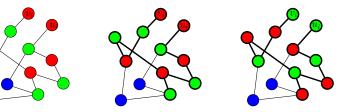
<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

... why approximate sampling?



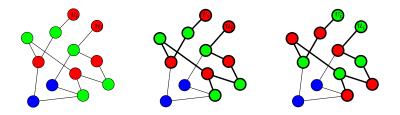






イロト 不得 トイヨト イヨト

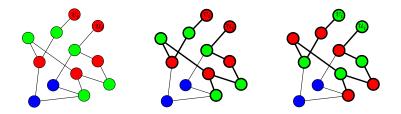
э



Failure When both v_i and u_i change colour Update fails

イロト 不得 トイヨト イヨト

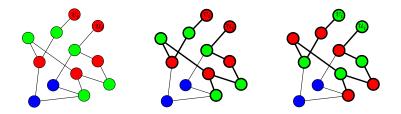
э



Failure Vs Approximation

The failures imply that Update is an approximation algorithm

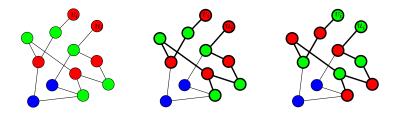
(日)



ℓ_1 -error for Update

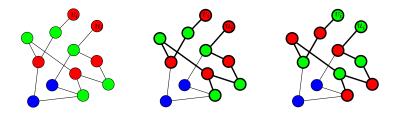
- having a perfect sample at the input
- ℓ_1 -error \approx the probability of failure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Approximate Sampler

The sampling algorithm that uses Update is approximation, too



Approximate Sampler

The sampling algorithm that uses Update is approximation, too

 ℓ_1 -error \approx Prob[there is a failure is some iteration]

(日) (四) (日) (日) (日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• for certain values of q the approach yields good approximation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an extensive chain
- care should be taken for v_i , u_i are at short distance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain
- care should be taken for v_i , u_i are at short distance
 - the update for such pairs is different (didn't show that)

Some Remarks

Some Remarks

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

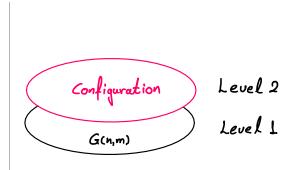
- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1

Some Remarks

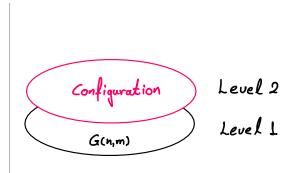
- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1
- [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
 - Potts model in random regular graphs
 - the algorithm for ferromagnetic Potts apply to G(n,m)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

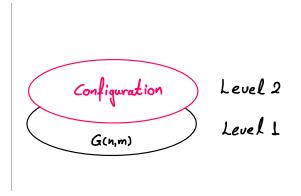


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



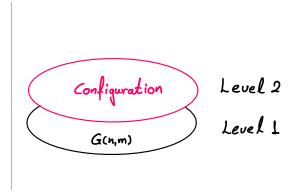
Objective

(日) (四) (日) (日) (日)



Objective

• pick at random two distant vertices, e.g., say u and v



Objective

- pick at random two distant vertices, e.g., say *u* and *v*
- with "very large probability" there is no Kempe chain that includes both *u* and *v*

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Graph first

Graph first

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ● ● ● ●

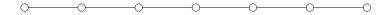
Graph first



▲□▶▲□▶▲□▶▲□▶ □ ● ●

Graph first

• reveal a neighborhood around each vertex in a BFS manner



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Graph first

• reveal a neighborhood around each vertex in a BFS manner

Graph first

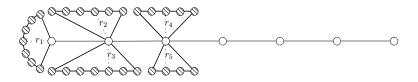
- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'

Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'

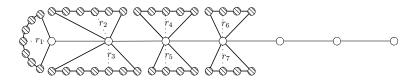
Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



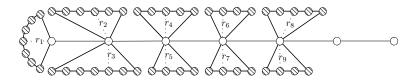
Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



Graph first

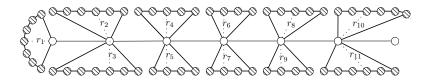
- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

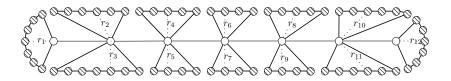
Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



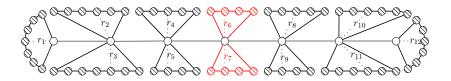
Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



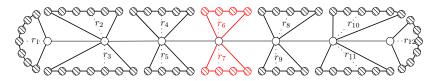
Graph first

- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'



Graph first

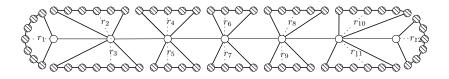
- reveal a neighborhood around each vertex in a BFS manner
 - constant number of neighbours
 - everything is within fixed radius r'
- "most of the times"
 - the neighbourhood is a tree of height at most r'
 - maximum degree $< (1+\epsilon)d$
 - the neighbourhood does not intersect with others



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

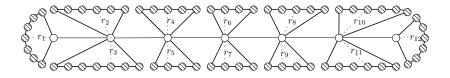
The random colouring part

The random colouring part



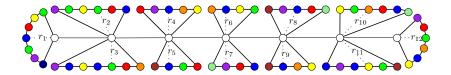
The random colouring part

• we consider a worst case boundary condition



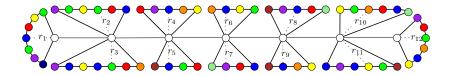
The random colouring part

• we consider a worst case boundary condition



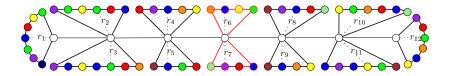
The random colouring part

- we consider a worst case boundary condition
- it suffices to have that the colouring of the vertex in the path does not depend too much on the condition



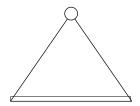
The random colouring part

- we consider a worst case boundary condition
- it suffices to have that the colouring of the vertex in the path does not depend too much on the condition

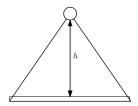


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

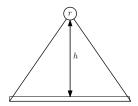
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



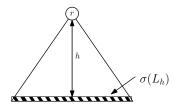
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

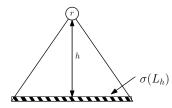


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

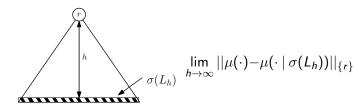




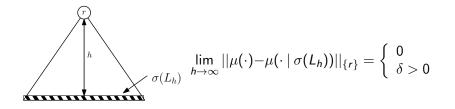
$$\|\mu(\cdot)-\mu(\cdot \mid \sigma(L_h))\|_{\{r\}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\int_{h}^{r} \lim_{h \to \infty} ||\mu(\cdot) - \mu(\cdot | \sigma(L_h))||_{\{r\}} = \begin{cases} 0 \\ \delta > 0 \end{cases}$$

Uniqueness condition $\forall \sigma(L_h)$ we have that

$$\lim_{h\to\infty} ||\mu(\cdot) - \mu(\cdot \mid \sigma(L_h))||_{\{r\}} = 0.$$

$$\int_{h}^{r} \lim_{h \to \infty} ||\mu(\cdot) - \mu(\cdot | \sigma(L_h))||_{\{r\}} = \begin{cases} 0 \\ \delta > 0 \end{cases}$$

Uniqueness condition $\forall \sigma(L_h)$ we have that

$$\lim_{h\to\infty} ||\mu(\cdot)-\mu(\cdot | \sigma(L_h))||_{\{r\}} = 0.$$

Suppose that the tree is R-ary. How many colour do we need for uniqueness?

Back to the analysis

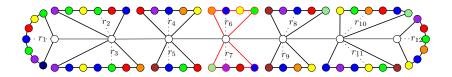
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Back to the analysis

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Trees around the path

- the neighbourhood is a tree of height at most r
- maximum degree $< (1 + \epsilon)d$

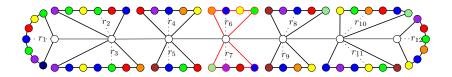


Back to the analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Trees around the path

- the neighbourhood is a tree of height at most r
- maximum degree $< (1 + \epsilon)d$



Conclusion

We need a number of colours q that guarantees Gibbs uniqueness in the $(1 + \epsilon)d$ -ary tree.

Result

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Let $\epsilon > 0$ be a fixed number, let d be sufficiently large number and fixed $k \ge (1 + \epsilon)d$.

Consider $\mathbf{G} = G(n, d/n)$ and let μ the uniform distribution over the k-colouring of \mathbf{G} . Let $\hat{\mu}$ be the distribution of the colouring that is returned by our algorithm on input \mathbf{G} . Let $c = \frac{\epsilon}{80(1+\epsilon/4)\log d}$, with probability at least $1 - n^{-c}$ over the

input instances **G** it holds that

$$||\mu - \hat{\mu}|| = O\left(n^{-c}\right).$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Question

Suppose I have Gibbs Uniques for general μ on the *d*-ary tree, can I use a similar approach for sampling on G(n, m)?

Question

Suppose I have Gibbs Uniques for general μ on the *d*-ary tree, can I use a similar approach for sampling on G(n, m)?

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question

Suppose I have Gibbs Uniques for general μ on the *d*-ary tree, can I use a similar approach for sampling on G(n, m)?

Remarks

• Update is specific to the distributions we are sampling from

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question

Suppose I have Gibbs Uniques for general μ on the *d*-ary tree, can I use a similar approach for sampling on G(n, m)?

Remarks

- Update is specific to the distributions we are sampling from
- For many distributions uniqueness is not established
 - there are only conjectures

Question

Suppose I have Gibbs Uniques for general μ on the *d*-ary tree, can I use a similar approach for sampling on G(n, m)?

Remarks

- Update is specific to the distributions we are sampling from
- For many distributions uniqueness is not established
 - there are only conjectures
- For the hypergraph $\mathbf{H}_k(n, m)$, uniqueness is be too restrictive,

go beyond uniqueness

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

propose a sampler for symmetric distributions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

propose a sampler for symmetric distributions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

Includes ...

• Ising model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

- Ising model
- Potts model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer

Symmetric Gibbs distributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer
 - spin-glass distribution

Symmetric Gibbs distributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer
 - spin-glass distribution

Remark

The above are for both graphs and hypergraphs

The previous approach

The previous approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**

Generate σ_0 according to the Gibbs distribution at ${\it G}_0$

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

Output: σ_r

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The challenge is to define Update, ... generate σ_i from σ_{i-1}

The challenge is to define Update, ... generate σ_i from σ_{i-1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration σ distributed as in μ

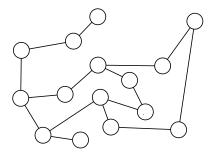
The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

Setting ...

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration ${m \sigma}$ distributed as in μ

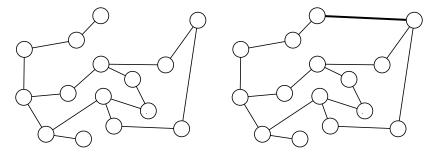
Objective

Generate efficiently ${m au}$ distributed (approximately) as in μ'



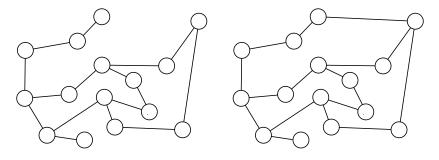
G

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



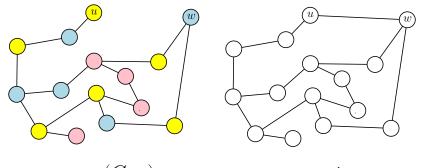
G

G'



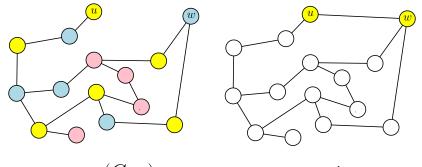
G

G'



 (G,σ)

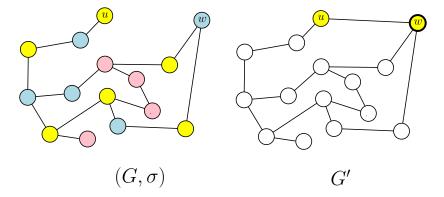
G'



 (G,σ)

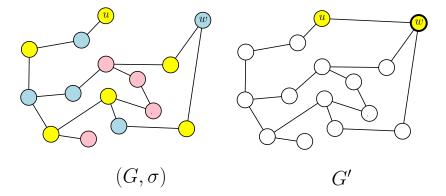
G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



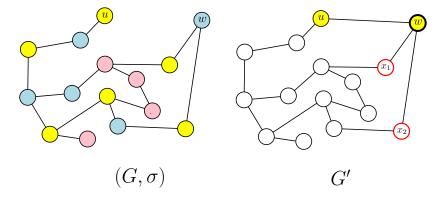
vertex w is a **disagreement** with spins {blue, yellow}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



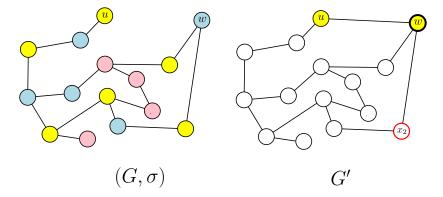
iteratively visit each vertex in G' and decide its configuration at τ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



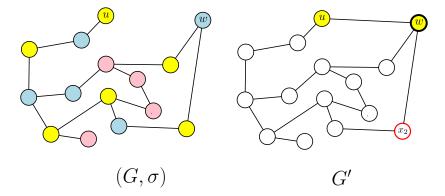
Priority to z's with $\sigma(z) \in \{ \text{blue}, \text{yellow} \}$, next to disagreement.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



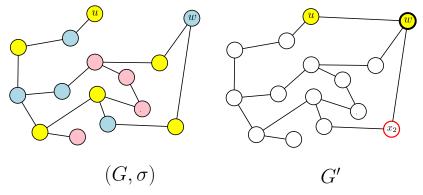
pick x_2 and decide $\tau(x_2)$ such that $\tau(x_2) \in \{\text{blue}, \text{yellow}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



the probability of disagreement is minimised by using **maximal** coupling

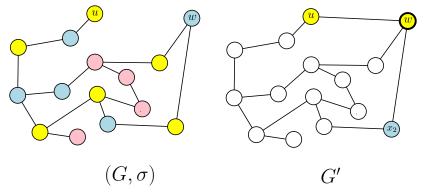
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



maximal coupling

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u,w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u,w\}))}\right\}.$$

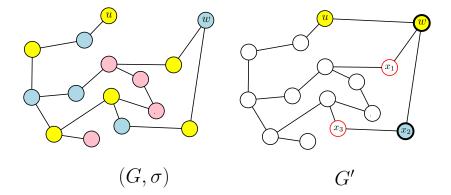
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



maximal coupling

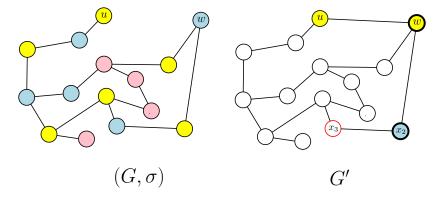
$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u, w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u, w\}))}\right\}.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ



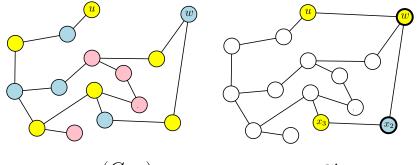
look for vertices z next to the disagreements such that $\sigma(z) \in \{ blue, yellow \}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



choose x_3 and repeat as before ...

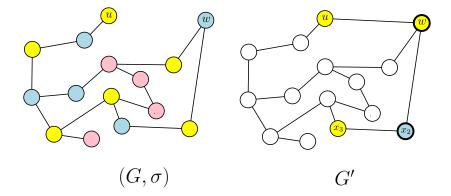
$$\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$$



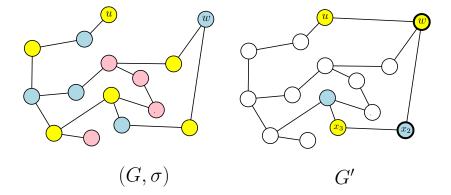
 (G,σ)

G'

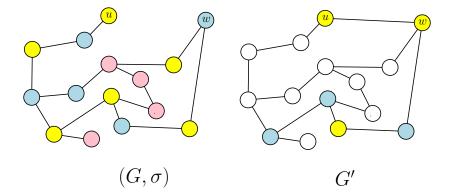
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



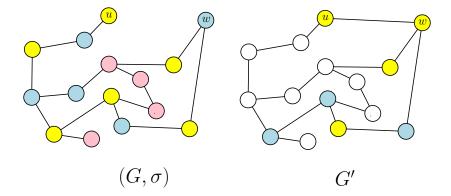
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



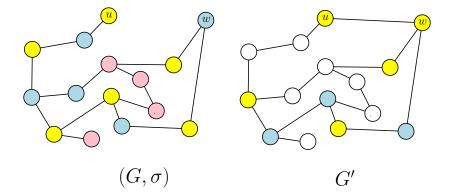
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



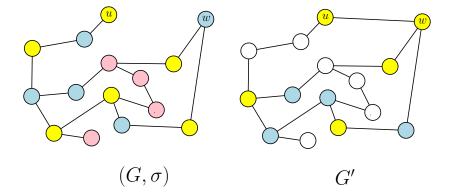
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



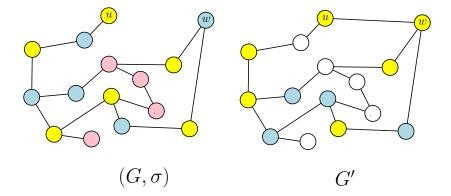
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

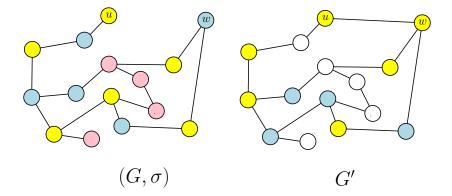


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



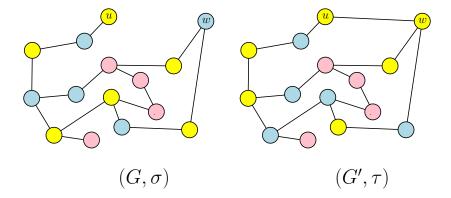


disagreement cannot propagate any more



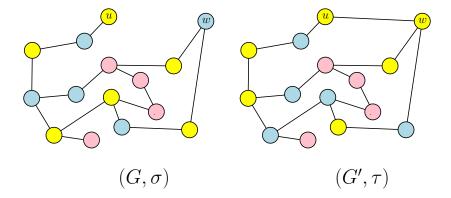
the remaining vertices keep the initial assignments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



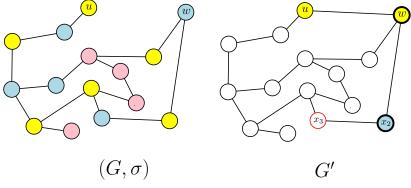
the remaining vertices keep the initial assignments.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



the approach generates a **perfect** sample from μ'

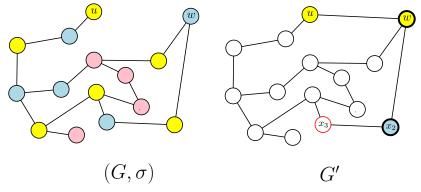
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



The catch ...

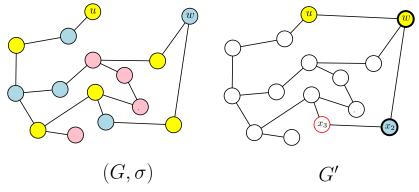
$$\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@



The catch ...

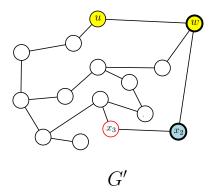
we don't know how to compute $\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))$ efficiently



The idea ...

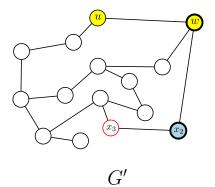
replace the Gibbs marginals with "good" approximations that can be computed efficiently

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ



Observation ...

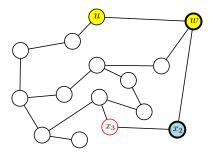
influences from vertices with fixed configuration make the Gibbs marginals at x_3 too complicated an object



However ...

in most cases all but one vertex are far away (girth)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

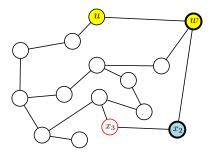


G'

Choosing the appropriate parameters ...

essentially only one vertex influences the marginal

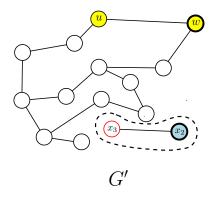
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



G'

Compute marginal but ...

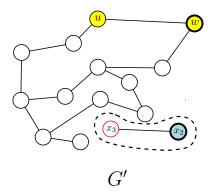
ignore the influence on x_3 from u and w



Effectively

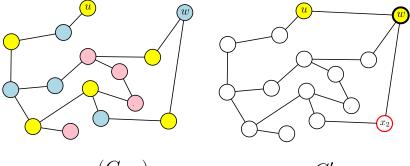
use the marginal at x_3 on the graph within the dashed curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



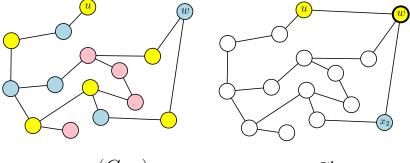
Remark

we can compute the "simplified" marginal at x_3 in O(1) steps



"maximal coupling"

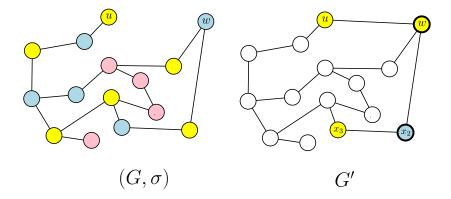
$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$



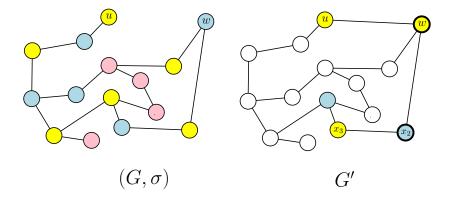
"maximal coupling"

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

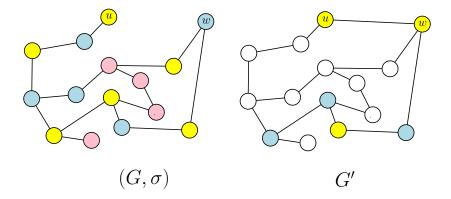
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



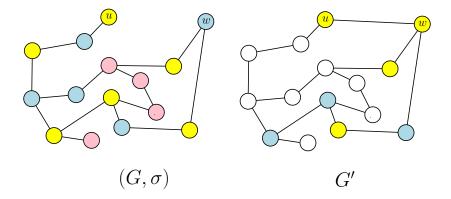
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



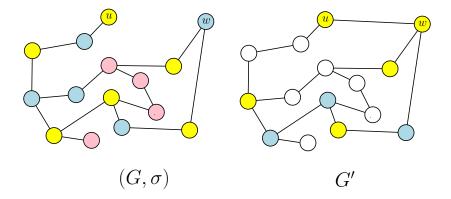
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



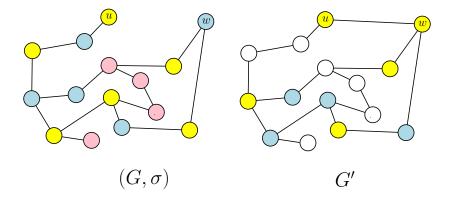
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



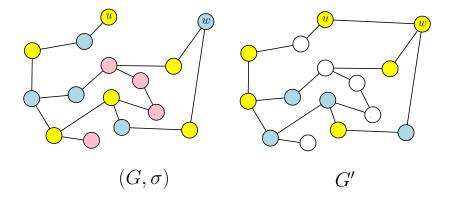
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

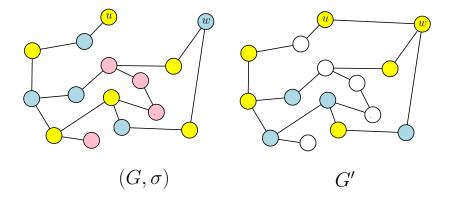


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

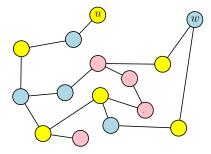


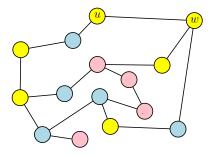
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙





when the disagreements cannot propagate any more the remaining vertices keep the same assignment



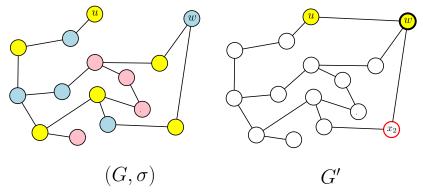


 (G,σ)

 (G',τ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

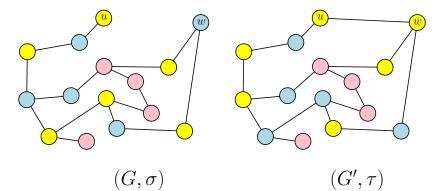
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



... another catch

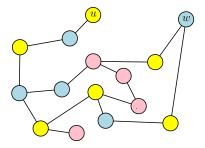
disagreements should not cover all the vertices of a cycle in G'

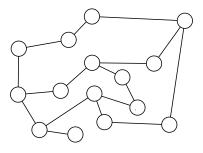
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



Otherwise ...

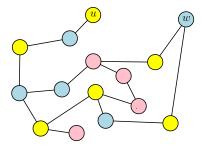
we have a failure!





G'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

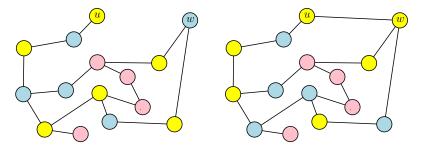




 (G,σ)

 (G',τ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



 (G,σ)

(日) (四) (日) (日) (日)

ℓ_1 -error for Update

- having a perfect sample at the input
- ℓ_1 -error \approx the probability of failure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$

 $-G_0$ is **empty**

Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_i with Update to generate σ_{i+1} **Output:** σ_r

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$ - G_0 is **empty**

Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_i with Update to generate σ_{i+1} **Output:** σ_r

Approximate Sampler

The sampling algorithm that uses Update is approximation, too

 ℓ_1 -error \approx Prob[there is a failure is some iteration]

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$ - G_0 is **empty**

Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_i with Update to generate σ_{i+1} **Output:** σ_r

The time complexity

the time complexity is $O(|E| \times |V|)$

- for each iteration we compute O(|V|) marginals
- we have |E| iterations

▲□▶▲圖▶★≧▶★≧▶ ≧ のQで

(ロ)、(型)、(E)、(E)、 E) の(()

• we considered high girth graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other
- we won't discuss the challenges from the short cycles here ...

The parameters

The parameters

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

The parameters

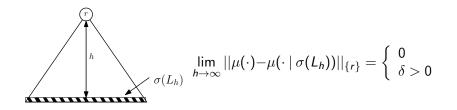
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

• good approximation \Rightarrow error $n^{-\Omega(1)}$

Won't use Uniqueness!

(日) (四) (日) (日) (日)



Uniqueness condition $\forall \sigma(L_h)$ we have that

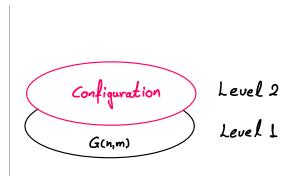
$$\lim_{h\to\infty} ||\mu(\cdot) - \mu(\cdot \mid \sigma(L_h))||_{\{r\}} = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

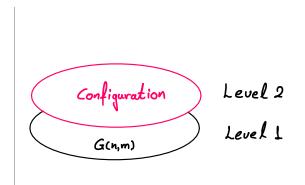
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Level 1 G(n,m)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

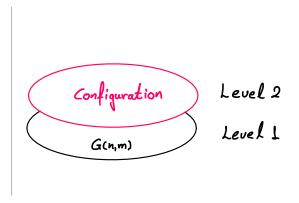


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Objective

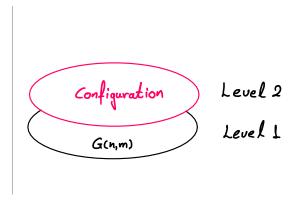
(日) (四) (日) (日) (日)



Objective

• pick at random two distant vertices, e.g., say u and v

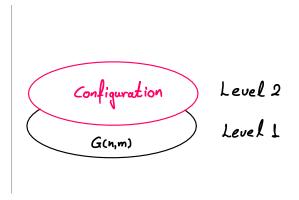
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Objective

- pick at random two distant vertices, e.g., say u and v
- apply the Update

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

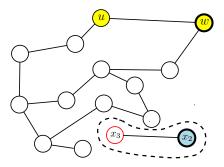


Objective

- pick at random two distant vertices, e.g., say u and v
- apply the Update
- with "very large probability" the update is local.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで



G'

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\max_{\eta, heta} ||\mathfrak{m}_{x_3}(\cdot \mid \eta) - \mathfrak{m}_{x_3}(\cdot \mid heta)|| < 1/d$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$\max_{\eta, heta} ||\mathfrak{m}_{\mathsf{x}_3}(\cdot \mid \eta) - \mathfrak{m}_{\mathsf{x}_3}(\cdot \mid heta)|| < 1/d$$

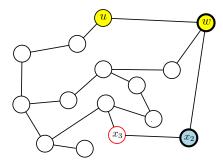
Any further condition?

$$\max_{\eta, heta} ||\mathfrak{m}_{\mathsf{x}_3}(\cdot \mid \eta) - \mathfrak{m}_{\mathsf{x}_3}(\cdot \mid heta)|| < 1/d$$

Any further condition? Yes!

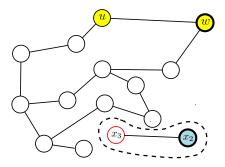
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

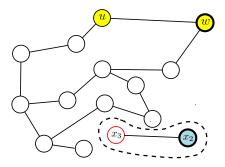


G'

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ



G'



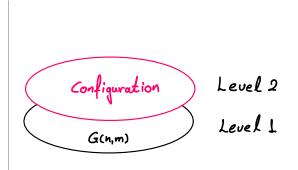
G'

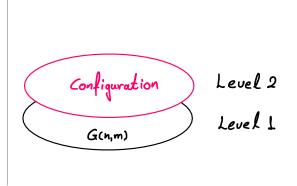
The new marginal is "good" approximation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Configuration Level 2

(日) (四) (日) (日) (日)





Objective

- pick at random two distant vertices, e.g., say u and v
- apply the Update
- on influence condition, with "very large probability" the update is local.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Uniform Model

- 1 generate G(n, m)
- 2 generate σ
- 3 apply Update

Teacher-Student Model

- 1 generate σ^*
- ${\it 2} {\it graph} \ G^*$
- 3 apply Update

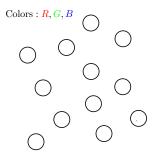
Uniform Model

- 1 generate G(n, m)
- 2 generate σ
- 3 apply Update

Planting Colourings

Teacher-Student Model

- 1 generate σ^*
- ${\it 2}$ graph G^*
- 3 apply Update



Uniform Model

- 1 generate G(n,m)
- 2 generate σ
- 3 apply Update

Planting Colourings

Teacher-Student Model

- 1) generate σ^*
- ${\it 2}$ graph G^*
- 3 apply Update



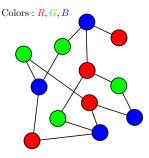
Uniform Model

- **1** generate G(n, m)
- 2 generate σ
- 3 apply Update

Planting Colourings

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 apply Update



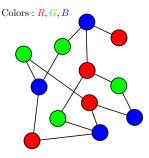
Uniform Model

- 1 generate G(n, m)
- 2 generate σ
- 3 apply Update

Planting Colourings

Teacher-Student Model

- 1) generate σ^*
- ${\it 2}$ graph G^*
- 3 apply Update



Uniform Model

- 1 generate G(n, m)
- 2 generate σ
- 3 apply Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

Teacher-Student Model

- 1) generate σ^*
- ${\it 2}$ graph G^*
- 3 apply Update

Uniform Model

- 1 generate G(n, m)
- 2 generate σ
- 3 apply Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

• this process is simpler to analyse

Teacher-Student Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1) generate σ^*
- 2 graph G^*
- 3 apply Update

Uniform Model

- 1 generate G(n, m)
- 2) generate σ
- 3 apply Update

Teacher-Student Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1) generate σ^*
- 2 graph G^*
- 3 apply Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small

Uniform Model

- 1 generate G(n, m)
- 2) generate σ
- 3 apply Update

Teacher-Student Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1 generate σ^*
- 2 graph G^*
- 3 apply Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small
- ... does this imply small failure probability for the "real process"?

Uniform Model

- 1 generate G(n,m)
- 2 generate σ
- 3 apply Update

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 apply Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small
- ... does this imply small failure probability for the "real process"?
- the above can be true if contiguity holds

Contiguity

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Contiguity

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty}\Pr[(G^*,\sigma^*)\in\mathcal{A}_n]=0\quad\text{iff}\quad\lim_{n\to\infty}\Pr[(G,\sigma)\in\mathcal{A}_n]=0.$$

Contiguity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty} \Pr[(\boldsymbol{G}^*,\boldsymbol{\sigma}^*)\in\mathcal{A}_n]=0 \quad \text{iff} \quad \lim_{n\to\infty}\Pr[(\boldsymbol{G},\boldsymbol{\sigma})\in\mathcal{A}_n]=0.$$

Contiguity implies ...

the two distributions have the same typical properties.

The conditions for the algorithm

Influence Condition

$$\max_{\eta, heta} ||\mathfrak{m}_{\mathsf{x}_3}(\cdot\mid\eta) - \mathfrak{m}_{\mathsf{x}_3}(\cdot\mid heta)|| < 1/d$$

Contiguity

The Gibbs distribution and the corresponding Teacher Student model are contiguous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Results for all aforementioned symmetric Gibbs distributions
 - both on the random graph G(n,m), or hypergraph $H_k(n,m)$

- Results for all aforementioned symmetric Gibbs distributions
 - both on the random graph G(n,m), or hypergraph $H_k(n,m)$
- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"

- Results for all aforementioned symmetric Gibbs distributions
 - both on the random graph G(n,m), or hypergraph $H_k(n,m)$
- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"
- For graphs, Influence Cond. coincides with the (conjectured) Gibbs Uniqueness

- Results for all aforementioned symmetric Gibbs distributions
 - both on the random graph G(n,m), or hypergraph $H_k(n,m)$
- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"
- For graphs, Influence Cond. coincides with the (conjectured) Gibbs Uniqueness
- For hyper-graphs, Influence Cond. gets us beyond uniqueness
 - This gets us to the "non-reconstruction" region

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(()

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1
 - works for any symmetric Gibbs distribution

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1
 - works for any symmetric Gibbs distribution
 - running time $O((n \log n)^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for most anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for most anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for most anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses
- uses concepts from other research areas

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for most anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses
- uses concepts from other research areas
 - contiguity is a tool developed to study Cavity's predictions

The end

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Thank you!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

PhD at CS Warwick!?

Ising Model

Let

$$\beta_{\text{Ising}}(\varDelta, k) = \log\left(\frac{\varDelta(k-1)+1-2^{k-1}}{\varDelta(k-1)+1}\right) \qquad \Delta > \frac{2^{k-1}-1}{k-1}.$$

Theorem

For integer $k \ge 2$ the following holds: For d > 0 either

1)
$$d > (2^{k-1}-1)/(k-1)$$
 and $\beta_{\text{Ising}}(d,k) < \beta < 0$, or
2) $d \le (2^{k-1}-1)/(k-1)$ and $\beta < 0$,

for H = H(n, m, k), where m = dn/k, let $\mu = \mu_H$ be the antiferromagnetic Ising model on H, with inverse temperature β and external field h = 0.

There is $c_0 = c_0(k, d, \beta) > 0$, s.t. with probability 1 - o(1) over the instances H, our algorithm generates a configuration with distribution $\bar{\mu}$ such that

$$||\bar{\mu}-\mu||_{tv} \leq n^{-\frac{c_0}{\log(dk)}}$$

Potts Model

Let

$$eta_{ ext{Potts}}(arDelta, oldsymbol{q}, oldsymbol{k}) = \log\left(rac{arDelta(k-1)+1-oldsymbol{q}^{k-1}}{arDelta(k-1)+1}
ight) \qquad arDelta > rac{oldsymbol{q}^{k-1}+1}{k-1}.$$

Theorem

For $k \ge 2$, let β , q, d satisfy one of ($a^{k-1}-1$)/(k-1) < d and $\beta_{Potts}(d, q, k) < \beta < 0$.

2
$$(q^{k-1}-1)/(k-1) > d$$
 and $\beta < 0$, including $\beta = -\infty$.

For H = H(n, m, k), where m = dn/k, let $\mu = \mu_H$ be the q-state antiferromagnetic Potts model on H with inverse temperature β . There exists $c_0 = c_0(k, d, \beta) > 0$ s.t. with probability 1 - o(1)over the instances H, our algorithm generates a configuration whose distribution $\overline{\mu}$ is such that

$$||\bar{\mu} - \mu||_{tv} \le n^{-\frac{c_0}{55\log(dk)}}$$

NAE-k-SAT

Theorem

For $\delta \in (0, 1]$, for $k \ge 2$, for any $1/(k - 1) \le d < (1 - \delta)\frac{2^{k-1}-1}{k-1}$ and for integer m = dn/k, the following is true for our algorithm: Consider $F_k(n, m)$ and let μ be the uniform distribution over the NAE satisfying assignments of $F_k(n, m)$. With probability 1 - o(1) over the input instances $F_k(n, m)$, our algorithm generates a configuration whose distribution $\overline{\mu}$ is such

that

$$||\bar{\mu} - \mu||_{tv} \le n^{-\frac{\delta}{55\log(dk)}}$$

k-spin system

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let

$$F_k(x) = \frac{|e^x - e^{-x}|}{(2^{k-1}-1)e^{-x} + e^x}.$$

Theorem

For $\delta \in (0, 1]$, for even integer $k \ge 2$ and $\beta \ge 0$ s.t.

$$\mathsf{E}[F_k(\beta \mathsf{J}_0)] \leq \frac{1-\delta}{d(k-1)}, \qquad \qquad \mathsf{J}_0 \sim \mathcal{N}(0,1),$$

consider H = H(n, m, k), where m = dn/k, and let μ be the k-spin model on H at inverse temperature β . With probability 1 - o(1) over the instances H and the couplings on the edges of H, our algorithm generates a configuration whose distribution $\overline{\mu}$ is such that

$$||\bar{\mu} - \mu||_{tv} \le n^{-\frac{\delta}{55\log(dk)}}$$